

Monitoring **Messplatz Kippe Witznitz**

Beprobung August-September 2015

Projekt Nr.: 15-002-40

Auftragnehmer:

Bearbeiter:

Auftraggeber: LMBV mbH

Walter-Köhn-Straße 2

04356 Leipzig

Umwelt Consult GmbH

Strümpellstraße 6 04289 Leipzig

Hubert Beyer

Datum: überarbeitete Fassung vom 30.06.2016

Thomas Lawrenz Thomas Kretschmer

Dipl.-Geol. Dipl.-Geogr.

Dieser Bericht besteht aus: 36 Seiten

5 Anlagen

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

II.	NHALT	TSVERZEICHNIS	SEITE
1	VE	RANLASSUNG/AUFGABENSTELLUNG	6
2	KU	IRZBESCHREIBUNG DES OBJEKTES	7
3	DU	RCHGEFÜHRTE ARBEITEN	10
	3.1	Zustandsprüfung	10
	3.2	Probenahme	10
	3.3	Laboranalytik	11
4	МО	ONITORING MEHRFACH VERFILTERTE GWM	13
	4.1	Zielstellung	13
	4.2	Messstellenbestand	13
	4.3	Zustandsprüfung	14
	4.4	Analysenergebnisse	14
5	МО	ONITORING RAMMPEGEL	21
	5.1	Zielstellung	21
	5.2	Messstellenbestand	22
	5.3	Zustandsprüfung	23
	5.4	Wasserspiegelmessung	23
	5.5	Analysenergebnisse	26
6	ZU	SAMMENFASSUNG/EMPFEHLUNGEN	33
7	QU	JELLEN- UND LITERATURVERZEICHNIS	36

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

ANLAGENVERZEICHNIS

Anlage 1 Lagepläne Anlage 1.1 Übersichtsplan mit Darstellung der untersuchten Messstellen;

M 1: 50.000

Anlage 1.2 Lageplan mit Darstellung der Hydroisohypsen sowie der ermittelten Wasserstände vom 10.08./01.09.2015

M 1: 10.000

Anlage 1.3 Lageplan mit Darstellung ausgewählter Parameter

M 1: 10.000

Blatt 1: pH-Werte (Feld) Blatt 2: Eisen gelöst

Blatt 3: Sulfat

Anlage 2 Geländedokumentation

Anlage 2.1 Zusammenstellung der ermittelten Wasserspiegel

Anlage 2.2 Probenahmeprotokolle

Anlage 2.3 Übersicht Probenahmeparameter

Anlage 3 Zusammenstellung der Analysenergebnisse im Vergleich zu den Schwellenwerten der LAWA

Anlage 3.1 Mehrfachmessstellen

Anlage 3.2 Rammpegel

Anlage 4 Vergleiche mit zurückliegenden Untersuchungen

Anlage 4.1 Zeitreihen der Analysenergebnisse - Mehrfachmessstellen

Anlage 4.2 Zeitreihen der Analysenergebnisse - Rammpegel

Anlage 4.3 Ganglinien ausgewählter Parameter – Mehrfachmessstellen

Anlage 4.4 Ganglinien ausgewählter Parameter – Rammpegel

Anlage 4.5 Zeitreihen der Grundwasserstände

Anlage 5 Labordaten

Anlage 5.1 Übernahme- /Übergabeprotokolle

Anlage 5.2 Prüfberichte

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

TABELLEN	VERZEICHNIS	SEITE
Tabelle 1:	Kippenaufbau /4/	8
Tabelle 2:	Darstellung der kippschichtbezogenen Verteilung der untersuchten Messstellen	8
Tabelle 3:	Resultate der Probenahme	11
Tabelle 4:	Ausbaudaten der Multilevelmessstellen	14
Tabelle 5:	Wesentliche Vor-Ort-Ergebnisse der Multilevelmessstellen	15
Tabelle 6:	Auffällige Ergebnisse (Fe, SO ₄ und NA) der Multilevelmessstellen	16
Tabelle 7:	Vergleich mit dem bisherigen Messwertniveau	17
Tabelle 8:	Ausbaudaten der untersuchten Rammpegel	22
Tabelle 9:	Messwertniveau der wesentlichen Parameter (Rammpegel)	26
Tabelle 10:	Vergleich mit dem bisherigen Messwertniveau	32

ABBILDUNGSVERZEICHNIS	SEITE
Abbildung 1: Zonierung der 4 Kippzonen (aus /7/)	9
Abbildung 2: Lage der Multilevelmessstellen im UG	13
Abbildung 3: Konzentrationsentwicklung für pH-Wert (M1 bis M3)	
Abbildung 4: Konzentrationsentwicklung für Eisen gelöst (M1 bis M3)	19
Abbildung 5: Konzentrationsentwicklung für Sulfat (M1 bis M3)	20
Abbildung 6: Lage der Profile I bis IV	24
Abbildung 7: Wasserstände im Profil 1 (Messung 02/12 und 09/15)	25
Abbildung 8: Wasserstände im Profil 2 (Messung 02/12 und 09/15)	25
Abbildung 9: Wasserstände im Profil 3 (Messung 02/12 und 09/15)	25
Abbildung 10: Konzentrationsentwicklung im Profil 1 für pH, Fe und SO4	27
Abbildung 11: Konzentrationsentwicklung im Profil 2 für pH, Fe und SO4	28
Abbildung 12: Konzentrationsentwicklung im Profil 3 für pH, Fe und SO4	29
Abbildung 13: Konzentrationsentwicklung im Profil 4 (links- bzw. rechtsseitig des Pleißeufers) für pH, Fe und SO4	30

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

ABKÜRZUNGSVERZEICHNIS

FiOK Filteroberkante

FiUK Filterunterkante

GFS Geringfügigkeitsschwelle

GK Gauß-Krüger

GOK Geländeoberkante

GWL Grundwasserleiter

GWM Grundwassermessstelle

Ki Kippe

m NHN Meter über Normalhöhenull

MHM Montanhydrologisches Monitoring

MP Messpunkt

OWM Oberflächenwassermessstelle

ROK Rohroberkante

UG Untersuchungsgebiet

Wsp. Wasserspiegel

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

1 VERANLASSUNG/AUFGABENSTELLUNG

Zur Überwachung der wasserwirtschaftlichen Verhältnisse im Gebiet der ehemaligen Tagebaue und Veredlungsanlagen Mitteldeutschlands führt die LMBV mbH ein Montanhydrologisches Monitoring (MHM) durch. Zielstellung des Grundwassermonitorings ist die Erhebung von repräsentativen Mess- und Analysenwerten.

Auf der Grundlage des Vertrags zur Durchführung des Montanhydrologischen Monitorings Westsachsen/Thüringen - Grundwassermonitoring § 2 und § 3 (Los II) für die Jahresscheibe 2015 (Bestellnummer: 11008379) wurde die Beyer Umwelt Consult GmbH mit ergänzenden Arbeiten im Rahmen des MHM beauftragt. Dabei handelt es sich um ein Grundwassermonitoring im Teilobjekt "Messplatz Kippe Witznitz". Das Teilobjekt "Messplatz Kippe Witznitz" ist Teil des Pilotprojekts "Untersuchung der Auswirkungen des GW-Wiederanstieges und der daraus folgenden Exfiltration der eisenbelasteten Grundwässer aus den Kippen des ehemaligen Tagebaues Witznitz in die Fließgewässer Pleiße und Wyhra".

Das Untersuchungsgebiet (UG) Messplatz Kippe Witznitz liegt im Bereich des ehemaligen Braunkohleabbaugebietes Witznitz. Nach Einstellung des aktiven Tagebaus sind die Grundwasserstände im UG angestiegen und liegen aktuell teilweise über dem Niveau des Vorfluters. Vorfluter ist die Pleiße, die im Westen an das UG angrenzt und dieses im Bereich von der Einmündung der Wyhra bis Neukieritzsch überquert. Aus der Kippe erfolgt eine Exfiltration von eisenhaltigem Kippengrundwasser in das Fließgewässer. Besonders zu Zeiten von Niedrigwasser weist die Pleiße zwischen der Wyhra-Mündung (nördlich von Lobstädt) und dem Stadtgebiet von Leipzig eine auffällig gelb-braune bis orangefarbene Färbung auf.

Zur Ergänzung und Erweiterung der vorliegenden regulären MHM-Daten wurde in 2007 von der LMBV mbH im Kippengebiet Witznitz II ein <u>spezieller Messplatz</u> errichtet. Der Messplatz umfasste 3 mehrfach verfilterte Messstellen (stromlinienartige Anordnung in Richtung Pleiße), 2 Erosionsmessstellen, einen Bodensickermessplatz sowie mehrere Grundwassermessstellen (Rammpegel). Zudem gab es am Standort 7 temporäre Sickerwasserfassungen.

In den Jahren ab 2007 wurde das Monitoring "Messplatz Kippe Witznitz" durch die G.E.O.S. Ingenieurgesellschaft mbH durchgeführt. Letzte Messungen fanden hier 2013 statt /4/. Mit den Erfahrungen der letzten Jahre sowie Empfehlungen aus /4/ und des vorhabenbegleitenden Arbeitskreises (VAK) wurden die Untersuchungen auf die mehrfach verfilterte Messstellen und die Rammpegel beschränkt. Ergänzt wurde das Monitoring um die GW-Messstellen, die im Zuge der Grundlagenermittlung zum Sickerschlitz im Bereich der Hochkippe Neukieritzsch (südwestlicher GW-Anstrom zur Pleiße) errichtet wurden (GWM 1301 bis 1310).

Die Weiterführung des Monitorings wurde auf der 19. Sitzung des VAK beschlossen.

Die erhobenen Daten bilden die *Grundlage* für die Beschreibung des jeweiligen IST-Zustandes und der Entwicklung der Grundwasserbeschaffenheit auf der Kippe Witznitz und im Anstrom der Pleiße in diesem Bereich sowie für weiterführende Modellierungen des Stofftransports im Kippenkörper Witznitz und der Stoffeinträge aus dem Kippenkörper in die Pleiße. Die Modellierung war nicht Gegenstand der Beauftragung.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Gemäß Aufgabenstellung waren folgende Arbeiten durchzuführen:

- Entnahme von Wasserproben aus 28 Grundwassermessstellen (Rammpegeln) einschließlich Durchführung einer inneren und äußeren Zustandsprüfung sowie Ermittlung der Wasserspiegelhöhe und Lotung der Tiefe;
- Entnahme von Wasserproben aus 3 Mehrfachmessstellen (mit insgesamt 13 Filterstrecken);
- o physikochemische Untersuchung der entnommenen Wasserproben;
- o Eingabe der Messwerte/Prüfergebnisse in das Informationssystem des AG;
- Dokumentation und Bewertung der Ergebnisse und Übergabe als Bericht (gedruckt und auf Datenträger).

Ergänzend dazu waren weitere Arbeiten erforderlich:

- · äußere Reinigung von 2 Grundwassermessstellen;
- Ersatz der Schlösser an den Multilevel-Messstellen;
- · Herstellen der Zuwegung zu einer Grundwassermessstelle.

Der vorliegende Bericht umfasst die Dokumentation und Bewertung der Beprobung und Analytik der 3 mehrfach verfilterten Messstellen sowie der 28 als Rammpegel ausgebauten Grundwassermessstellen (vgl. Anlage 1.1).

2 KURZBESCHREIBUNG DES OBJEKTES

Das UG gehört zum Kippenkomplex Kahnsdorf und befindet sich zwischen den Ortschaften Lobstädt, Neukieritzsch und Kahnsdorf. Bei dem UG handelt es sich um das verkippte Restloch des ehemaligen Tagebaus Dora-Helene. Durch das UG fließt die umverlegte Pleiße (ab der Wyhramündung). Im Zuge der Vorflutverlegung erfolgte zwischen Lobstädt und dem Trachenauer Wehr eine Lehmdichtung des Flussbettes bis auf Höhe Mittelwasser, um eine Infiltration des Wassers während der Phase des aktiven Bergbaus und der maximalen Grundwasserabsenkung zu verhindern. Nach Einstellung des aktiven Bergbaus und der Grundwasserhaltung stieg das Grundwasser im Kippenbereich an. Östlich des UG befindet sich der Seenverbund (ehem. Restlöcher) Kahnsdorfer, Hainer und Haubitzer See, welche ihre Endwasserstände im Wesentlichen erreicht haben (+126,5 m NHN bzw. +126 m NHN). Weitere Standgewässer im Umfeld sind die Speicher Lobstädt und Witznitz sowie das Restloch Großzössen.

In den Bergbaukippen hat ein intensiver Vermischungsprozess der abgebaggerten Abraummassen stattgefunden, wodurch gut durchlässige, kiesige Bereiche neben schlecht durchlässigen, schluffigen Sanden sowie Tonen, Schluffen und kohligen Partien auftreten können. Die Kippenmischböden weisen einen mittleren Durchlässigkeitsbeiwert von 10⁻⁶ bis 10⁻⁷ m/s auf /7/.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Die Kippe weist gemäß /7/ einen hohen Anteil an Pyritoxidationsprodukten auf (Eisen, Sulfat), bei Luftzutritt treten Versauerungserscheinungen auf. Die wesentlichen Ergebnisse zum Aufbau der Kippe (Quantifizierung der Stoffmengen nach /7/) sind in der nachfolgenden Tabelle dargestellt.

Tabelle 1: Kippenaufbau /4/

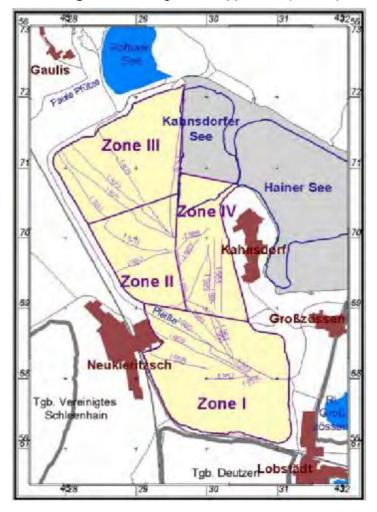
	Bereich		Korngröße			chemische Zusammensetzung			
Kippschicht	Borolon	Herkunft	Ton/Schluff	Sand	Kies	Schwefel ges.	Corgan.	Karbonat	hydr. Acidität
	+mNHN		%				mmol/kg		
3	142-158	quartäres Material	41	34	25	0,3	2,7	0,21	12
2	120-142	Böhlener Schichten	17	81	2	1,6	8,1	0,02	162
1	100-120	Flözmittel/ -verschnitt	51	40	9	1,5	25	0,01	62
'	<100	Hainer Sande	-	-	-	-	-	-	-

Der Untergrund weist für die oberste Kippschicht (quartäres Material) eine ausgeglichene Korngrößenverteilung auf, Tone und Schluffe sind mit 41 % am häufigsten vertreten. Typisch für die quartäre Herkunft sind hier die relativ hohen Kiesanteile (25 %). Bei der mittleren Kippschicht (2) dominieren Sande (81 %), das Material stammt aus den tertiären Böhlener Schichten. Die unterste Kippschicht 1 (Flözmittel) besteht überwiegend aus Tonen/Schluffen (51 %) sowie Sanden (40 %). Der Großteil besteht aus tertiärem Mittelabraum (ca. 60 % Flözbegleiter) sowie den Hainer Sanden (ca. 20 %).

Eine Übersicht zu den einzelnen Kippschichten mit Angabe der Herkunft sowie zu den Teufenbereichen in Verbindung mit der Zuordnung der im UG vorhandenen Grundwasseraufschlüsse ist in der nachfolgenden Tabelle 2 enthalten.

Tabelle 2: Darstellung der kippschichtbezogenen Verteilung der untersuchten Messstellen

Kippschicht	Bereich +mNHN	Herkunft	Filter OK	Messstellen	Anzahl
3	142-158	quartäres Material			
			+130 bis +134	RKB Kippe (RKB11-14, RKB17-20)	8
2	120 - 142	Böhlener Schichten	+126 bis +129	RKB Pleiße (RKB1-10; 1301-1310)	20
			+125 bis +126	M1-1, M2-1, M3-1	3
			+120 bis +121	M1-2, M2-2, M3-2	3
	100 - 120	Flözmittel	+114 bis +115	M1-3, M2-3, M3-3	3
1	100-120	Flözverschnitt	+107 bis +108	M1-4, M2-4, M3-4	3
	<100	Hainer Sande	+92,5 bis +93,5	M1-5	1



Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Gemäß /7/ (S. 35) lassen sich die Kippbereiche weiter in sogenannte Kippzonen unterteilen, beginnend im Süden mit der Zone I, nördlich davon im mittleren Teil die Zone II, östlich davon die an die Ortslage Kahnsdorf grenzende Zone IV sowie die im Norden/Nordwesten gelegene Zone III (vgl. Abbildung 1).

Abbildung 1: Zonierung der 4 Kippzonen (aus /7/)

Die Kippzone I ist die älteste Zone und mit Abraummassen vom Beginn der Kohleförderung gefüllt (Fertigstellung der Oberfläche bis 1963). Sie weist Mächtigkeiten bis ca. 70 m auf. Die Mächtigkeit der Kippzone II wird mit ca. 60 m angegeben. Die Mächtigkeit der Kippzone III beträgt nur noch ca. 50 m, die Fertigstellung erfolgte ca. 1976. Hinsichtlich der Zusammensetzung weisen die einzelnen Kippzonen Unterschiede auf. Der höchste Anteil an Flözbegleitern wurde in der Kippzone I mit ca. 35 % ermittelt, die Kippzone II (28 %) und III (21 %) weisen geringere Anteile auf. Demgegenüber wurden zunehmende Anteile von Hainer Sanden in der Kippzone I bis III ermittelt. Laut /7/ weisen die Flözbegleiter gegenüber den Hainer Sanden höhere Schwefelanteile auf (und damit auch höhere Eisengehalte, Pyritoxidation). Weiterhin ist die Gesamtacidität der Flözbegleiter höher als die der Hainer Sande.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

3 DURCHGEFÜHRTE ARBEITEN

3.1 Zustandsprüfung

Vor der Grundwasserbeprobung erfolgten die innere und äußere Zustandsprüfung, eine Messung des Grundwasserstandes und die Lotung der Endtiefe der Messstellen.

Die Aufnahme eines Tiefenprofils (innere Zustandsprüfung) war bei keiner der Messstellen möglich, da der Innendurchmesser bei allen Rammpegeln lediglich 50 mm betrug (zu schmal für die von uns eingesetzte Multiparametersonde YSI 600 XL).

3.2 Probenahme

Die Entnahme der Grundwasserproben erfolgte im Zeitraum vom 10.08. bis 04.09.2015 unter Einhaltung der Vorgaben des Merkblattes zum Montanhydrologischen Monitoring der LMBV mbH (MHM) /8/. Alle relevanten Daten sind in den Probenahmeprotokollen in Anlage 2.2 dokumentiert.

Für die Entnahme der Grundwasserproben aus den <u>Rammpegeln</u> wurde auf Grund des geringen Ausbaus sowie der geringen Wasserspiegel (geringer Messstelleninhalt) eine Kleinpumpe vom Typ Gigant eingesetzt. Eine reguläre Probenahme (Einhaltung des hydraulischen bzw. qualitativen Abbruchkriteriums) war wegen der geringen Ergiebigkeit bei keinem der Messpunkte möglich. Die Probenahmen erfolgten bei allen Rammpegeln nach dreimaligem Abpumpen am vierten Tag als Schöpfprobe. Zum Abpumpen wurde die Pumpe ca. 0,5 m über Endteufe positioniert.

Während des Abpumpens erfolgten die Aufzeichnung des Grundwasserstandes, die Messung der Vor-Ort-Parameter pH-Wert, Temperatur, elektrische Leitfähigkeit, Sauerstoffgehalt und Redoxpotential in einer Durchflussmesszelle sowie die Aufnahme der Wahrnehmungsparameter Geruch, Färbung, Trübung und Bodensatz (vgl. Anlage 2.2).

Bei den drei Messpunkten 6179, 6180 und 6181 handelt es sich um Multilevelmessstellen mit jeweils 4 bzw. 5 Filterstrecken. Jeder Filterbereich ist mit einer fest installierten, druckluftbetriebenen Membranpumpe ausgerüstet. Für die Probenahme wird mittels eines Steuergerätes (Kompressor) Druckluft erzeugt und über einen separaten Luftschlauch in die Pumpe geleitet. Der Betriebsdruck bemisst sich gemäß /1/ nach der folgenden Formel:

P [bar] = Einbautiefe der Membranpumpe in m /10 +1,5

Zum Erreichen des Abbruchkriteriums sind gemäß /1/ das dreifache Volumen der Pumpe sowie des Schlauches abzupumpen. Die Vor-Ort-Parameter waren hier ebenfalls zu erfassen.

An den entnommenen Wasserproben wurde vor Ort der K_S/K_B - Wert bestimmt sowie der Eisenschnelltest durchgeführt. Die Proben wurden gemäß den Vorgaben filtriert (Druckfiltration) und in die vom Labor vorgesehenen Probenahmegefäße blasenfrei abgefüllt. Bis zur Übergabe an das Labor wurden die Proben in Kühlboxen gelagert.

Die Übergabe der Proben erfolgte am Tag der Entnahme und wurde in Protokollen (vgl. Anlage 5.1) dokumentiert.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Die wesentlichen Resultate der Probenahme sind in nachfolgender Tabelle 3 zusammengefasst.

Tabelle 3: Resultate der Probenahme

Markscheidernummer der Messstelle	Resultate der Probenahme
61591, 61601, 61611, 61621, 61631, 61641, 61651, 61661, 61681, 61701, 61711, 61721, 61751, 61761, 61771, 61781, 70591, 70601, 70611, 70621, 70631, 70641, 70651, 70661, 70671, 70681	Probenahme (Schöpfprobe) aus Rammpegeln nach 3 x Abpumpen
6179-15, 6180-14, 6181-14	Probenahme an Multilevelmessstellen
61691	keine PN, geringer Wasserspiegel
61671	keine PN, kein Nachlauf

3.3 Laboranalytik

Die chemischen Analysen wurden im Laboratorium der SGS Institut Fresenius GmbH durchgeführt. Die Prüfberichte sind in Anlage 5.2 des vorliegenden Gutachtens enthalten. An gleicher Stelle wurden die eingesetzten Messverfahren und Bestimmungsgrenzen dokumentiert.

Folgende Parameter/Parametergruppen wurden bestimmt:

Grundprogramm:

 pH-Wert, elektr. Leitfähigkeit, TIC, DOC, Ammonium-N, Nitrat-N, o-Phosphat-P, Phosphor_{gesamt,} Natrium, Kalium, Calcium, Magnesium, Karbonathärte, Gesamthärte, Chlorid, Sulfat, Eisen_{gelöst,} Eisen (II), Mangan_{gelöst.}

<u>Zusatzprogramm Versauerung (wenn pH-Wert < 5):</u>

o Arsen, Silizium, Nickel, Cadmium, Chrom_{gesamt,} Zink, Kupfer, Blei, Aluminium.

weitere Parameter:

- gesamte wirksame Azidität;
- Sulfid (bei Auffälligkeiten).

Anmerkung TIC: Die analysierten TIC-Werte wurden in der Bewertung nicht berücksichtigt. Grund hierfür sind die in nahezu allen Messpunkten abweichenden Messergebnisse im Vergleich mit den Vormessungen. So liegen die Messwerte flächenhaft deutlich unter dem bisherigen Messwertniveau. Insbesondere bei den Mehrfachmessstellen lagen die aktuellen TIC-Gehalte zumeist > 50 mg/l im Vergleich zur Vorjahresmessung Werten überwiegend > 200 mg/l. Die Messreihen werden von unserer Seite in der sich darstellenden Form als nicht plausibel eingeschätzt und können daher nicht in die Auswertung einbezogen werden. Theoretisch sind deutliche Verringerungen des TIC möglich, jedoch lassen die bisherigen Messverläufe solch einen flächenhaften Konzentrationsrückgang als unwahrscheinlich er-

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

scheinen. Sollten sich die Messwerte bestätigen, kann ggf. nach der nächsten Probenahme eine Statusänderung vorgenommen werden.

Die Messwerte wurden alle nochmals durch das Labor überprüft und wurden im Wesentlichen bestätigt. Eine systematisch fehlerhafte Probenahme unsererseits wird ausgeschlossen. Die Proben wurden fachgerecht in die vorgefertigten Flaschen abgefüllt, kühl gelagert und am Tag der Probenahme dem Labor übergeben. Fehler in der Probenahme würden nur bei einzelnen Messungen unplausible Werte begründen.

Das Labor führte die Analytik gemäß DIN EN 1484 durch (analog bisheriger Analysen).

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

4 MONITORING MEHRFACH VERFILTERTE GWM

4.1 Zielstellung

Die Beprobung der mehrfach verfilterten Grundwassermessstellen (Multilevelmessstellen) soll Aufschluss über die räumliche und zeitliche Variation der Grundwasserzusammensetzung im Bereich des Messplatzes Kippe Witznitz geben.

4.2 Messstellenbestand

Bei den Messstellen M1 (6179), M2 (6180) und M3 (6181) handelt es sich um sogenannte Multilevelmessstellen mit Mehrfachverfilterung. Die drei Mehrfachmessstellen befinden sich auf dem Südwesthang der Kippe Witznitz. Sie liegen auf einem Profil, wobei die M1 im oberen, die M2 im mittleren und die M3 im unteren Hangbereich (nahe der Vorflut Pleiße) positioniert wurde. Die Lage der Messstellen ist in der Anlage 1.2 sowie schematisch in der nachfolgenden Abbildung dargestellt.

Abbildung 2: Lage der Multilevelmessstellen im UG

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Die nachfolgende Tabelle enthält eine Zusammenstellung zur Lage der Filterstrecken der Multilevelmessstellen. Die Filterbereiche der 3 Multilevelmessstellen sind nahezu identisch in der Teufe. Der oberste Filterbereich liegt dabei bei ca. +126 m NHN und damit knapp 4 m unter dem Wasserspiegel der Pleiße.

Tabelle 4: Ausbaudaten der Multilevelmessstellen

Messstelle	Markscheider-Nr.	Filterbereich	n [m u. ROK]	Filterbereic	h [+m NHN]
Messsiene	Warkscheider-Mr.	ок	UK	ОК	UK
M 1-1	61791	20,8	21,8	126,5	125,5
M 1-2	61792	26,8	27,8	120,5	119,5
M 1-3	61793	32,8	33,8	114,5	113,5
M 1-4	61794	38,8	39,8	108,5	107,5
M 1-5	61795	53,8	54,8	93,5	92,5
M 2-1	61801	16,2	17,2	126,6	125,6
M 2-2	61802	22,2	23,2	120,6	119,6
M 2-3	61803	28,2	29,2	114,6	113,6
M 2-4	61804	34,2	35,2	108,6	107,6
M 3-1	61811	8,2	9,2	126,2	125,2
M 3-2	61812	14,2	15,2	120,2	119,2
M 3-3	61813	20,2	21,2	114,2	113,2
M 3-4	61814	26,2	27,2	108,2	107,2

4.3 Zustandsprüfung

Im Rahmen der Zustandsprüfung wurden bei allen drei Messstellen fehlende Schlösser festgestellt, welche durch neue ersetzt wurden. Weitere Beschädigungen oder Hinweise darauf wurden nicht festgestellt.

4.4 Analysenergebnisse

Die Ergebnisse der chemischen Untersuchungen sind in der Anlage 3.1 zusammenfassend sowie im Prüfbericht des Labors in Anlage 5.2 enthalten. Ein Vergleich der aktuellen Ergebnisse mit den Ergebnissen zurückliegender Untersuchungen ist in Anlage 4.1 tabellarisch (Zeitreihen) und in Anlage 4.3 grafisch (Ganglinien) enthalten.

pH-Werte und elektr. Leitfähigkeit

In der nachfolgenden Tabelle sind die Messwerte für die pH-Werte sowie die Leitfähigkeiten teufenbezogen (Filterlagen der 3 Multilevelmessstellen vergleichbar) dargestellt. Für die Teufenbeschriftung wurde ein repräsentativer Mittelwert gewählt, die detaillierten Filterlagen sind in der Tabelle 4 enthalten. Besonders auffällige Messwerte wurden <u>unterstrichen</u>.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Tabelle 5: Wesentliche Vor-Ort-Ergebnisse der Multilevelmessstellen

Filterlage		pH-Wert		elektr. Leitfähigkeit [µS/cm]			
[+m NHN]	M1	M2	M3	M1	M2	M3	
126	5,2	5,6	<u>4,5</u>	<u>7.750</u>	5.840	<u>6.870</u>	
120	5,6	<u>4,6</u>	5,5	6.390	<u>9.190</u>	5.530	
114	5,9	5,7	6,3	5.540	<u>6.950</u>	4.720	
108	5,5	6,1	5,8	<u>7.030</u>	5.560	5.410	
93	5,3			4.280			

Die pH-Werte schwanken in den 3 Multilevelmessstellen zwischen 4,5 und 6,3 (sauer bis schwach sauer). Die beiden niedrigsten pH-Werte wurden in den oberen Teufenbereichen, sowie die höchsten pH-Werte in den unteren Teufenbereichen ermittelt. Die unteren Teufen weisen tendenziell höhere pH-Werte auf. Die pH-Wert-Verteilung ist insgesamt recht inhomogen und folgt keinem erkennbaren Schema. Die Messpunkte der M1 weisen insgesamt die geringste Schwankungsbreite auf.

Die elektrischen Leitfähigkeiten schwanken zwischen 4.280 und 9.190 μ S/cm. Der niedrigste Wert wurde dabei in der M1-5 (bei +93 m NHN) und der höchste Wert in der M2-2 (+120 m NHN) festgestellt.

Die Ursachen für die starken Schwankungen innerhalb der Teufen liegen in der inhomogenen Zusammensetzung der Kippe. Die Ergebnisse bestätigen die inhomogene Verteilung mit lokal zum Teil deutlich erhöhtem Lösungspotential.

Eisen gelöst, Sulfat, Nettoazidität

Die Ergebnisse zu den Parametern gelöstes Eisen, Sulfat und Nettoazidität wurden in gleicher Form wie oben in der Tabelle 6 dargestellt. Die Messwerte schwanken dabei bei Eisen gelöst von 820 bis 4.000 mg/l, bei Sulfat von 2.940 bis 12.200 mg/l sowie bei der Nettoazidität von 3,9 bis 132 mmol/l. Die jeweiligen Maximalgehalte wurden am Messpunkt M2-2 ermittelt. Die jeweils niedrigsten Konzentrationen wurden in der M1-5 (mit Ausnahme Nettoazidität) festgestellt. Insgesamt weisen die Messwerte in nahezu allen Messpunkten ein deutlich erhöhtes Konzentrationsniveau auf. Die Messwerte belegen damit eine insgesamt sehr ausgeprägte bergbauliche Beeinflussung. Dies ist darauf zurückzuführen, dass die Genese des untersuchten Grundwassers ausschließlich innerhalb des Kippenkörpers erfolgte (Zustrom von Nordosten).

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Tabelle 6: Auffällige Ergebnisse (Fe, SO₄ und NA) der Multilevelmessstellen

Filterlage	Eisen gelöst [mg/l]			Sulfat [mg/l]			Nettoazidität [mmol/l]		
[+m NHN]	M1	M2	M3	M1	M2	M3	M1	M2	M3
126	2.000	1.800	2.800	7.000	5.660	7.630	34,4	22,1	39,4
120	2.400	<u>4.000</u>	1.500	6.420	<u>12.200</u>	4.470	24,6	<u>132,0</u>	17,2
114	1.400	2.400	1.100	4.300	6.290	4.510	14,3	23,7	12,7
108	2.300	1.200	1.900	6.910	3.820	6.280	31,7	3,9	19,7
93	820			2.940			9,4		

weitere auffällige Messwerte

In Verbindung mit den niedrigen pH-Werten (Versauerung) waren bei den beiden Messpunkten M2-2 und M3-1 auch die Schwermetalle zu untersuchen. Hierbei sind insbesondere die erhöhten Messwerte bei Nickel (0,86 bis 2 mg/l) und Zink (5 bis 6,6 mg/l) zu nennen.

Auffällige Messwerte sind weiterhin das Ammonium-N, welches im Schwankungsbereich von 0,5 bis 26 mg/l liegt. Die höchsten Messwerte wurden in M1-2 (26 mg/l), M1-1 (22 mg/l) und M2-2 (12 mg/l) ermittelt (starker bergbaulicher Einfluss). Demgegenüber war Nitrat-N nicht nachweisbar. Dies ist ein Beleg für reduzierende Verhältnisse.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

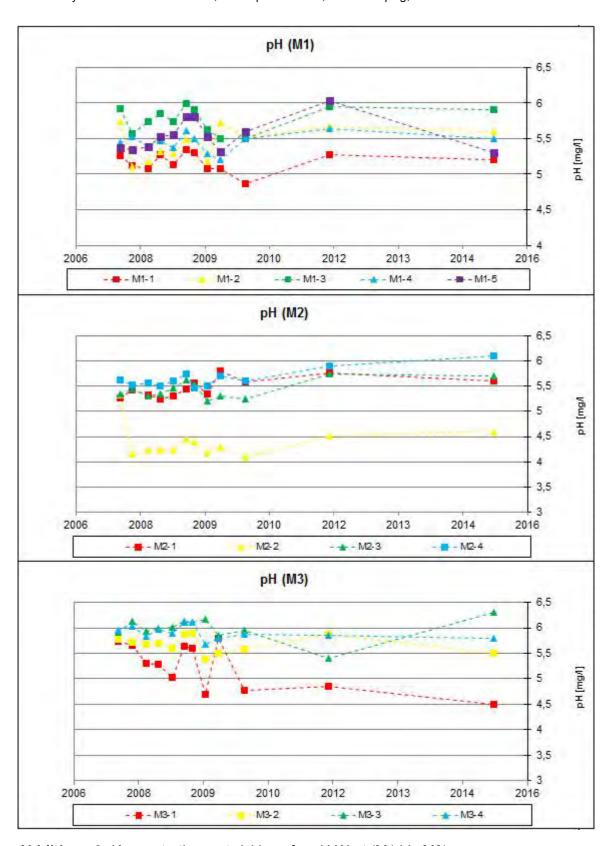
Vergleich mit bisherigen Messungen

In der Anlage 4.1 sind die bisherigen Messwerte tabellarisch zusammengefasst. Die Anlage 4.3 enthält die grafische Auswertung zur Konzentrationsentwicklung wesentlicher Parameter. In der nachfolgenden Tabelle 7 sind die augenscheinlichen Veränderungen in der Konzentrationsentwicklung für ausgewählte Parameter dargestellt.

Vorbemerkung: Die ermittelten Messwerte werden mit den Ergebnissen der zurückliegenden Messungen verglichen. Dabei werden die aktuellen Messwerte dem bisherigen Schwankungsbereich/Konzentrationsniveau (= bisherige min/max Werte mit Eliminierung von Ausreißern) gegenübergestellt. Soweit möglich werden zudem Trends zur Entwicklung der Konzentrationen benannt.

Tabelle 7: Vergleich mit dem bisherigen Messwertniveau

Messstellenname		p	Н	L	.f	Su	lfat	Eis	sen	Netto	oazid.
	M1-1						-		-		
	M1-2					+	1	+	1		
M1	M1-3										↓
	M1-4					+	1		1		
	M1-5			-	\	-	\downarrow		↓	-	\downarrow
	M2-1					+	1	+	1		•
M2	M2-2										
IVIZ	M2-3					+	1	+	1		_
	M2-4	+	1								_
	M3-1		-								
M3	M3-2			-	\	-	\				-
IVIO	M3-3		+	-	\downarrow		•				
	M3-4				\downarrow			+	1		


leer Konzentration im Schwankungsbereich zurückliegender Jahre

- + Überschreitung des bisherigen Messwertniveaus
- Unterschreitung des bisherigen Messwertniveaus
- ↑ / ↓ Trends (wenn erkennbar)

Weiterhin wurden für die Parameter Sulfat, gelöstes Eisen und pH-Wert teufen- und messstellenbezogene Ganglinien erstellt (Abbildung 3 bis Abbildung 5).

Projekt Nr. 15-002-40

Abbildung 3: Konzentrationsentwicklung für pH-Wert (M1 bis M3)

Projekt Nr. 15-002-40

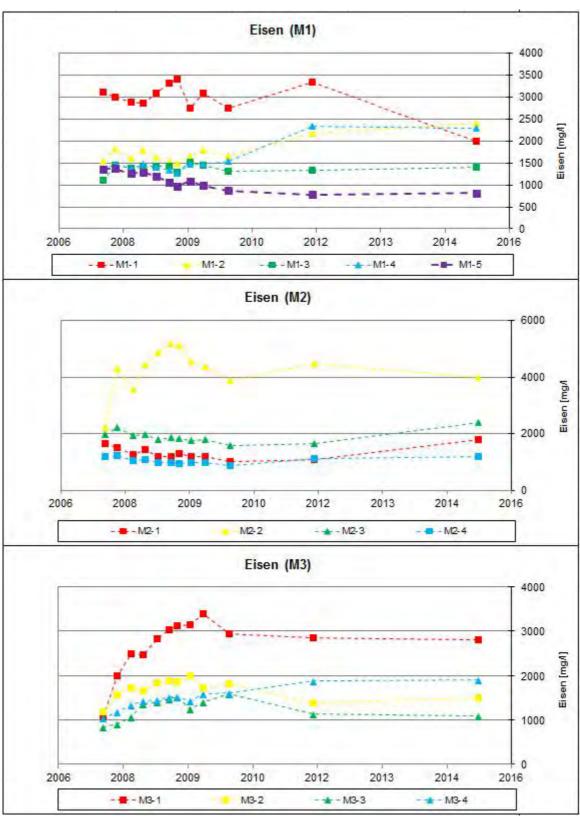


Abbildung 4: Konzentrationsentwicklung für Eisen gelöst (M1 bis M3)

Projekt Nr. 15-002-40

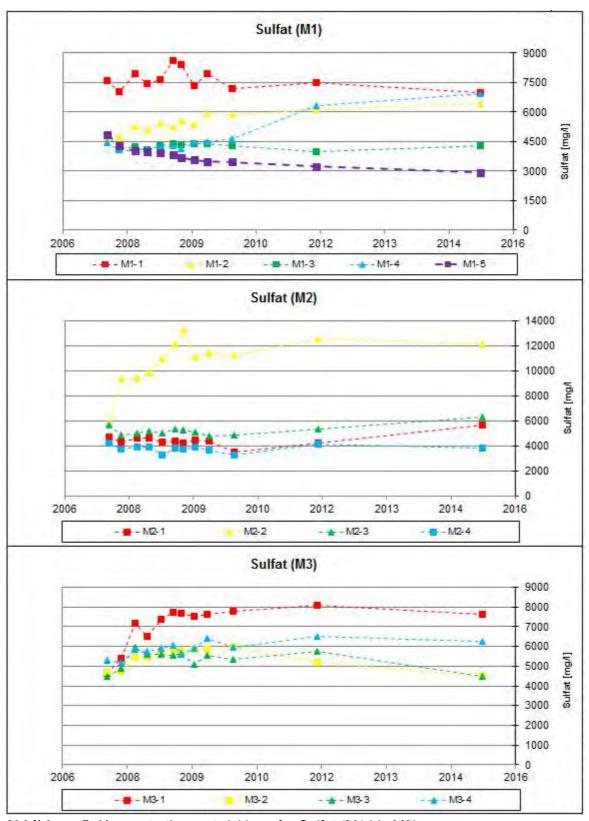


Abbildung 5: Konzentrationsentwicklung für Sulfat (M1 bis M3)

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Hinsichtlich der Darstellung der bisherigen Messwertentwicklung zeigt sich ein uneinheitliches Bild (vgl. auch Anlage 4.1 und Anlage 4.3). Bei dem Parameter elektrische Leitfähigkeit waren in 4 Fällen auffällige Konzentrationsänderungen zu verzeichnen. Dabei handelt es sich um Unterschreitungen des bisherigen Konzentrationsniveaus in Verbindung mit fallenden Trends (insbesondere an der M3). Weiterhin waren bei Nettoazidität in mehreren Fällen Unterschreitungen des bisherigen Messniveaus erkennbar, jedoch war hinsichtlich der jeweiligen Teufenlage kein einheitliches Bild erkennbar.

Bei Sulfat stellten sich an einzelnen Messpunkten (M1-4, M2-2 und M3-1) größere Schwankungen dar (Abbildung 5). Steigende Trends waren an 4 Punkten erkennbar. Vereinzelt konnten aber auch fallende Trends ermittelt werden (M1-5, M3-2).

Für den Parameter Eisen_{gelöst} wurde in 4 Fällen eine Überschreitung des bisherigen Konzentrationsniveaus festgestellt. Steigende Trends waren hier in je zwei Messpunkten (verschiedene Teufen) in M1 und M2 erkennbar. Für den Messpunkt M1-5 wurde sowohl bei Sulfat als auch bei Eisen ein seit Beginn der Messungen anhaltend fallender Trend festgestellt.

Hinsichtlich der Entwicklung bei pH-Wert liegen laut Tabelle 7 nur geringe Dynamiken vor. Insgesamt liegen die Messwerte hier überwiegend auf dem Niveau der Vormessung. Hervorzuheben ist die M3-1, hier wurde aktuell der niedrigste Messwert der Messreihe festgestellt.

Insgesamt lässt sich hinsichtlich der zeitlichen Entwicklung wie auch bei der Messwertverteilung kein einheitliches bzw. teufenbezogenes Muster erkennen. Dies bestätigt die oben angesprochene Inhomogenität der Kippe.

Weiterhin wurden die beiden Messstellen M2-2 und M3-1 gemäß Versauerungsprogramm analysiert (pH<5). Auffällig waren dabei insbesondere Zink (bis 6,6 mg/l) und Nickel (bis 2 mg/l) sowie in geringerem Maße Arsen (bis 0,038 mg/l), Cadmium (0,002 mg/l) und Chrom gesamt (0,011 mg/l). Die genannten Messwerte überschreiten die Schwellenwerte der LAWA (oberer Maßnahmenschwellenwert bzw. Geringfügigkeitsschwelle). Rückblickend sind Überschreitungen des bisherigen Messniveaus bei Arsen sowie vereinzelt bei Cadmium und Chrom_{gesamt} erkennbar. Die Gründe für die festgestellten Schwermetalle liegen in der verstärkten Mobilisierung infolge der niedrigen pH-Werte.

5 MONITORING RAMMPEGEL

5.1 Zielstellung

Bei den Rammpegeln handelt es sich um insgesamt 28 Grundwassermessstellen, die im Umfeld der Pleiße positioniert wurden. Dabei wird weiter unterschieden in die Rammpegel im direkten Umfeld der Pleiße (20 Stück) sowie die Pegel auf dem Kippenkörper (8 Stück).

Ziel der Untersuchungen ist es, die Wasserinhaltsstoffe im Umfeld der Pleiße zu erfassen und deren Entwicklung zu überwachen. Im Ergebnis soll der Einfluss des der Pleiße zuströmenden Grundwassers charakterisiert und bewertet werden.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

5.2 Messstellenbestand

Insgesamt wurden 28 Messstellen untersucht. Ein Teil der 20 Pegel im direkten Umfeld der Pleiße sind als Unterflurmessstellen ausgebaut. Gegenüber dem letzten vollständigen Grundwassermonitoring am Standort Messplatz Kippe Witznitz wurden in 2014 insgesamt 10 neue Pegel (GWM 1301 bis 1310) installiert (Erstbeprobung 2014, Überflur).

Weiterhin sind 8 Pegel auf dem Kippenkörper positioniert. Die Pegel sind Überflur ausgebaut.

Eine Zusammenstellung zu den Kenndaten der untersuchten Rammpegel ist in der nachfolgenden Tabelle 8 enthalten. Alle Rammpegel haben einen Innendurchmesser von 50 mm.

 Tabelle 8:
 Ausbaudaten der untersuchten Rammpegel

Danaiah	Mark-	Messstellen-	DVA	111/4/	Messpunkthöhe	Teufe	Filter
Bereich	scheidernr.	name	RW	HW	[+ m NHN]	[m u. MP]	[m u. MP]
	61591	RKB1	4531020	5668020	130,44	4,04	3,0 - 4,0
	61601	RKB2	4530880	5668045	130,55	4,15	3,2 - 4,2
	61611	RKB3	4529544	5668746	129,86	4,16	3,2 - 4,2
	61621	RKB4	4529799	5668613	130,20	4,10	3,1 - 4,1
	61631	RKB5	4528419	5669791	129,11	4,01	3,0 - 4,0
	61641	RKB6	4528258	5670078	129,02	2,12	1,1 - 2,1
	61651	RKB7	4528204	5671479	129,07	3,47	2,5 - 3,5
	61661	RKB8	4530999	5667979	130,83	4,13	3,1 - 4,1
	61671	RKB9	4530715	5668080	130,29	4,09	3,1 - 4,1
Pleiße	61681	RKB10	4529390	5668786	129,54	4,04	3,0 - 4,0
FIGIDE	70591	1301	4529214	5668857	134,95	6,95	5,9 - 6,9
	70601	1302	4529550	5668687	133,81	6,01	5,0 - 6,0
	70611	1303	4529715	5668589	136,21	8,01	7,0 - 8,0
	70621	1304	4529886	5668509	133,51	6,01	5,0 - 6,0
	70631	1305	4530052	5668419	134,20	6,00	5,0 - 6,0
	70641	1306	4530219	5668333	133,96	5,96	5,0 - 6,0
	70651	1307	4530380	5668239	135,04	7,04	6,0 - 7,0
	70661	1308	4530547	5668160	133,83	6,03	5,0 – 6,0
	70671	1309	4530960	5667966	135,65	7,05	6,1 - 7,1
	70681	1310	4531095	5667962	135,75	6,95	5,9 - 6,9
	61691	RKB11	4528200	5670616	137,71	6,01	5,0 - 6,0
	61701	RKB12	4528394	5670248	138,23	6,03	5,0 - 6,0
	61711	RKB13	4528542	5671179	134,82	6,02	5,0 - 6,0
Vinno	61721	RKB14	4528808	5670709	135,73	6,03	5,0 - 6,0
Kippe	61751	RKB17	4528811	5670392	137,95	5,75	4,8 - 5,8
	61761	RKB18	4530869	5667795	138,51	6,11	5,1 - 6,1
	61771	RKB19	4530835	5667468	137,64	5,94	4,9 - 5,9
	61781	RKB20	4530776	5667370	138,37	4,97	4,0 - 5,0

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

5.3 Zustandsprüfung

Im Rahmen der Zustandsprüfung wurden keine Beschädigungen an den Rammpegeln festgestellt. Einzelne Messpunkte waren schwer auffindbar (Unterflur) bzw. stark zugesetzt (verockert/verschmutzt).

Größere Teufenabweichungen (> 0,2 m) wurden in den Pegeln RKB3 mit 61 cm sowie in der 1302 mit 39 cm ermittelt.

5.4 Wasserspiegelmessung

Im Rahmen der Erstbegehung erfolgte eine Messung der Grundwasserstände (am 10.08. und 01.09.2015). Die Ergebnisse der Wasserspiegelmessungen sind in der Anlage 2.1 enthalten.

Die RKB 1-10 wiesen dabei oberflächennahe Wasserspiegel bis hin zu artesischen Verhältnissen auf. Die pleißenahen Pegel weisen dabei Messwerte von +128,78 m NHN bis +130,99 m NHN auf. Die Pegel auf dem Kippenkörper schwanken zwischen +132,00 m NHN und +135,66 m NHN.

Im Vergleich mit den zurückliegenden Messungen liegen die Wasserspiegel der pleißenahen Pegel (nur RKB 1-10) auf dem Niveau der Vormessungen. Bei den Pegeln auf der Kippe liegen die Wasserstände im unteren Drittel des bisherigen Messniveaus, zum Teil sogar darunter (z.B. RKB 18, das Jahr 2015 war ein vergleichsweise trockenes Jahr).

Zur Berücksichtigung vorherrschender GW-Fließrichtungen wurde der im Rahmen der Hydrodynamischen Jahresberichte 2014 erstellte Hydroisohypsenplan (4. Quartal 2014) für den Hangendgrundwasserleiter (1.1/1.5/1.8/2.5) einschließlich Kippen herangezogen. Neben den Hydroisohypsen in Anlage 1.2 sind vergleichend die ermittelten Wasserspiegel angetragen.

Aus den Hydroisohypsen ist die aktuelle Fließrichtung zu entnehmen. Die Grundwasserfließrichtung ist im Süden im Bereich der Hochhalde Neukieritzsch nach Norden zur Pleiße orientiert, im Osten schwenkt das Grundwasser nach Osten hin ein, im Westen nach Westen. Für den Kippenbereich westlich von Kahnsdorf ist von einem Plateau ausgehend ein Abströmen in alle Richtungen zu erkennen. Im Süden, Westen und Nordwesten fließt das Grundwasser der Pleiße zu, im Osten und Nordosten erfolgt der Zustrom zum Hainer bzw. Kahnsdorfer See.

In Anlehnung an den Bericht von 2013 /4/ wurden die aktuellen Wasserstände auf 3 Profilen vom Kippenplateau zum Kippenfuß am Uferbereich der Pleiße dargestellt. Der Verlauf der Profillinien I bis III ist in der nachfolgenden Abbildung 6 dargestellt.

Für die weitere Bearbeitung wurde in Abbildung 6 ergänzend das Profil IV (a und b) eingezeichnet.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

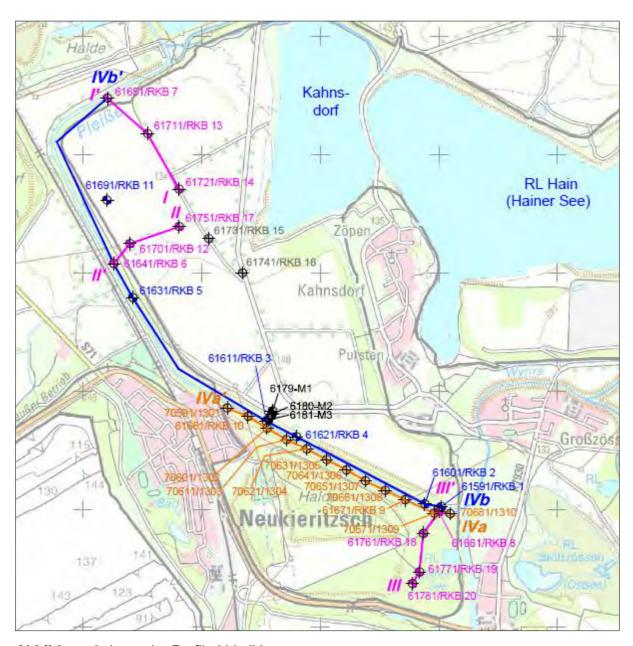


Abbildung 6: Lage der Profile I bis IV

In den nachfolgenden Abbildungen sind die Wasserstände der aktuellen Messung sowie der Vormessung in Bezug zur Geländeoberkante dargestellt. Aus Gründen der Übersichtlichkeit sind nur jeweils zwei Zeitschnitte dargestellt.

Die Wasserstände der beiden Messungen sind im Wesentlichen vergleichbar. Größere Abweichungen wurden lediglich im Profil 1 bei der RKB 13 ermittelt. Weitere relevante Wasser-

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

spiegelschwankungen wurden noch in den RKB12, 18, 19 und 20 (74 bis 94 cm) ermittelt. Dabei handelt es sich ausschließlich um Messpunkte auf der Kippe.

In der Anlage 4.5 wurden die Zeitreihen zu den bisherigen Wasserspiegelmessungen dargestellt.

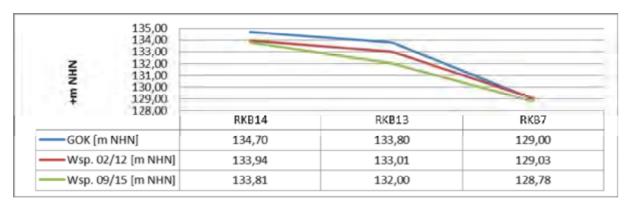
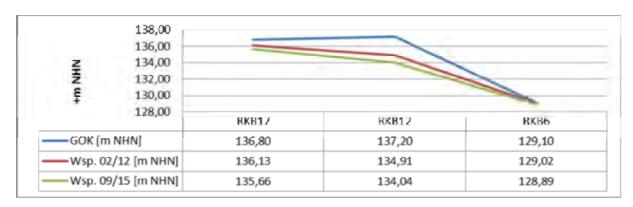
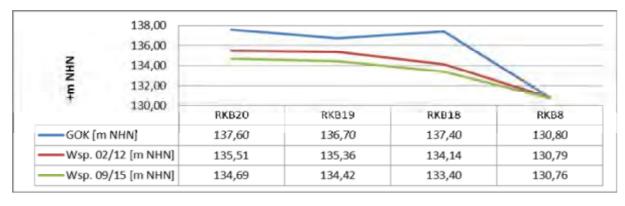




Abbildung 7: Wasserstände im Profil 1 (Messung 02/12 und 09/15)

Abbildung 8: Wasserstände im Profil 2 (Messung 02/12 und 09/15)

Abbildung 9: Wasserstände im Profil 3 (Messung 02/12 und 09/15)

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

5.5 Analysenergebnisse

Die Ergebnisse der chemischen Untersuchungen sind in der Anlage 3.2 zusammenfassend sowie im Prüfbericht des Labors in Anlage 5.2 enthalten. Ein Vergleich der aktuellen Ergebnisse mit den Ergebnissen zurückliegender Untersuchungen ist in Anlage 4.2 tabellarisch (Zeitreihen) und in Anlage 4.4 grafisch (Ganglinien) enthalten.

Zur Übersicht wurden in der nachfolgenden Tabelle 9 zunächst die jeweiligen Spannweiten bei den Konzentrationen dargestellt. Demnach weisen die Rammpegel im Untersuchungsgebiet (UG) im Mittel ein saures Millieu (pH=4,5) auf. Damit einhergehen verhältnismäßig hohe mittlere Eisen- (1.074 mg/l) und Sulfatgehalte (3.748 mg/l) sowie elektr. Leitfähigkeiten (im Mittel 4.160 μ S/cm). Die z. T. sehr hohen Nettoaziditäten belegen ebenfalls saure Verhältnisse am Standort. Dies wird auch durch die erhöhten Messwerte bei der wirksamen Acidität (bis 140 mmol/l) unterstrichen.

Die Messwerte belegen damit, wie auch bei den Mehrfachmessstellen, eine zum Teil sehr deutliche bergbauliche Beeinflussung des Grundwassers (extrem erhöhte Eisen- und Sulfatgehalte).

In der Mehrzahl der Fälle waren zudem Schwermetalle zu analysieren (Versauerung), die auffälligsten Parameter sind dabei Zink (Mittelwert = 2,4 mg/l), Nickel (Mittelwert = 0,8 mg/l) und Arsen (bis max. 0,037 mg/l).

Tabelle 9: Messwertniveau der wesentlichen Parameter (Rammpegel)

Parameter	Minimum	Maximum	Mittelwert	Anzahl
pH-Wert	3,5	6,7	4,5	
elektr. Leitfähigkeit	1.350	8.750	4.160	
Eisen gelöst	14	4.200	1.074	26
Sulfat	787	10.400	3.748	
Nettoazidität	-4,1	71,7	20,1	
Arsen	0,006	0,21	0,037	
Nickel	0,006	5,9	0,8	19
Zink	0,07	8,8	2,4	

Die Auswertung der chemischen Analysen wird sich im Wesentlichen auf die in Abbildung 6 dargestellten Profile und die Parameter pH-Wert, Eisen_{gelöst} und Sulfat beziehen. Gegenüber den bisherigen Auswertungen sind die Profile 1 und 2 um die beiden RKB 15 und 16 verringert (Messstellen nicht mehr vorhanden).

Zudem wird ein weiterer Profilschnitt entlang des Pleißeufers analog den anderen 3 Profilen ausgewertet.

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Profilschnitt 1

In Abbildung 10 sind für das Profil 1 (nach Nordwesten orientiert) die Konzentrationen der Parameter pH-Wert, Eisen und Sulfat im Längsschnitt dargestellt.

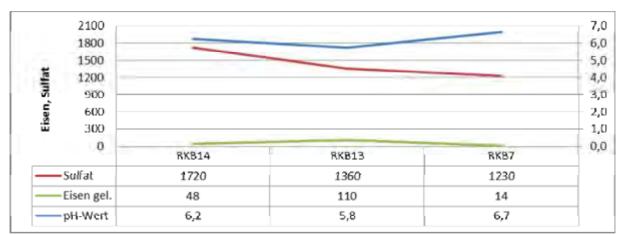


Abbildung 10: Konzentrationsentwicklung im Profil 1 für pH, Fe und SO4

Die pH-Werte weisen im Längsschnitt das Minimum (5,8) in der GWM am Mittelhang auf. Hier wurde auch der mit Abstand höchste Eisengehalt (110 mg/l) ermittelt. Gegenüber den Vormessungen fällt auf, dass die beiden bisher gemessenen oberhalb am Hang gelegenen GWM (RKB15 und 16, in Abbildung 6 grau dargestellt) deutlich höhere Eisengehalte (um 1.000 mg/l) aufwiesen. Die Ursache wird hier im variablen Kippenaufbau gesehen. Bei Sulfat ist über das Profil eine Konzentrationsabnahme zu verzeichnen. Im Vergleich mit den bisherigen Messungen war in der GWM auf Pleißeniveau eine leichte Sulfatzunahme (mit steigendem Trend) erkennbar. Die GWM am Mittelhang weist einen geringfügigen Rückgang bei Sulfat und Eisen (hier auch mit Trend) auf. Die Entwicklung deutet auf eine geringfügige Abschwächung durch anhaltende Auswaschung aus dem Kippengelände hin.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Profilschnitt 2

In Abbildung 11 sind für das Profil 2 die Konzentrationen der wesentlichen Parameter (pH-Wert, Eisen und Sulfat) im Längsschnitt dargestellt.

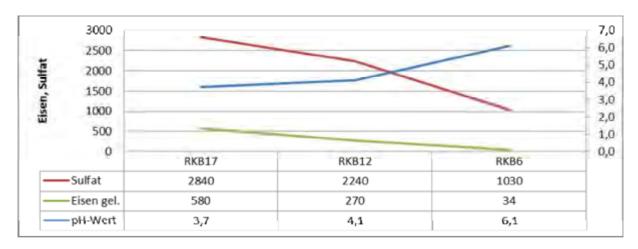


Abbildung 11: Konzentrationsentwicklung im Profil 2 für pH, Fe und SO4

Das Profil am Westhang des Messplatzes Kippe Witznitz weist für die 3 betrachteten Parameter ein deutliches Bild auf. Für Eisen und Sulfat sind im Längsverlauf deutliche Konzentrationssprünge erkennbar. Die höchsten Messwerte wurden hier in der RKB17 mit einem Eisenwert von 580 mg/l ermittelt. In der mittleren Messstelle RKB12 hat sich der Eisengehalt halbiert und auf Pleißeniveau beträgt er nur noch einen geringen Bruchteil (34 mg/l). Bei Sulfat zeigt sich im Profil (RKB17 zu RKB6) eine Reduzierung auf ca. ein Drittel. Die pH-Werte sind in den beiden RKB17 und 12 mit 3,7 bzw. 4,1 sehr sauer. In der RKB6 wurden demgegenüber nur noch schwach saure Verhältnisse angetroffen (6,1). Im Vergleich mit den früheren Untersuchungen liegen die aktuellen Messungen im Bereich der bisherigen Konzentrationsniveaus. Trends waren nicht erkennbar. Insbesondere in den beiden RKB17 und 12 sind noch deutliche Kippeneinflüsse erkennbar, welche jedoch mit zunehmender Nähe zur Vorflut geringer werden. Die bis 2012 untersuchte RKB15 (Anstrom zur RKB17) wies demgegenüber einen noch deutlich höheren Kippeneinfluss auf.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Profilschnitt 3 (Hochhalde Neukieritzsch)

In Abbildung 12 sind für das Profil 3 die Konzentrationen der wesentlichen Parameter (pH-Wert, Eisen und Sulfat) im Längsschnitt dargestellt.

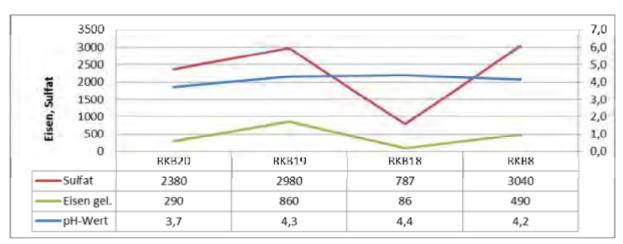
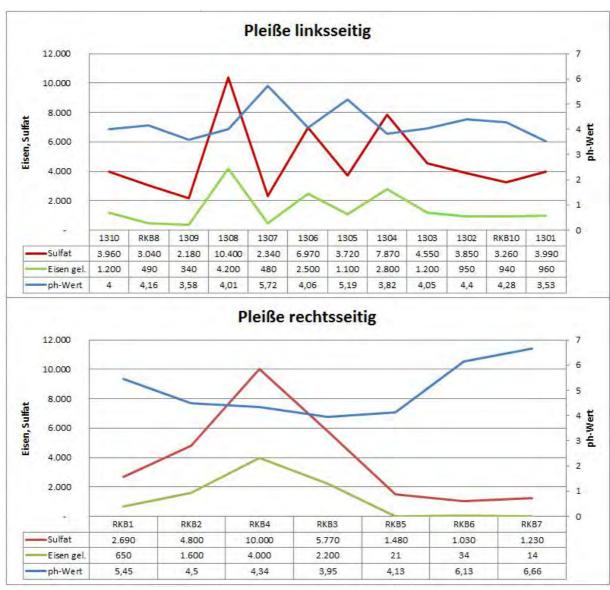


Abbildung 12: Konzentrationsentwicklung im Profil 3 für pH, Fe und SO4

Der Profilschnitt 3 erfasst das Längsprofil der Hochhalde Neukieritzsch im Südosten des UG. Dabei zeigt sich ein differenziertes Bild bei den Parametern. Zunächst weisen alle Messpunkte saure Verhältnisse auf (pH 3,7 bis 4,3). Bei den Parametern Eisen und Sulfat weicht die RKB18 deutlich von den weiteren Messpunkten ab, Eisen liegt mit 86 mg/l und Sulfat mit 787 mg/l deutlich unter dem Niveau der weiteren Messpunkte. Der benachbarte Messpunkt RKB19 weist einen 10-fach höheren Eisengehalt auf. Zu begründen ist dies mit der lokal differenzierten Inhomogenität des Kippenaufbaus. Im Vergleich mit früheren haben sich die Ergebnisse aus den Vorjahren bestätigt. Der Eisengehalt in den RKB18 und 8 überschreitet das bisherige Messniveau leicht. Zu erklären ist diese Entwicklung mit dem Zustrom aus der Kippe sowie der anhaltenden Verwitterung. Bei der RKB20 waren eine Unterschreitung des bisherigen Messniveaus bei Eisen sowie eine Überschreitung bei Sulfat erkennbar.



Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Profilschnitt 4 (Pleißeufer)

Für den Profilschnitt 4, beginnend im Südosten an der Wyhramündung, der Pleiße folgend zeigt die Abbildung 13 die Konzentrationen der wesentlichen Parameter (pH-Wert, Eisen und Sulfat) im Längsschnitt, getrennt nach Messpunkten linksseitig (IVa) bzw. rechtsseitig (IVb) der Pleiße. Die erfassten Messpunkte liegen entlang des Pleißeufers und repräsentieren damit den direkten Grundwasserzustrom zur Pleiße. Das Profil linksseitig (IVa) repräsentiert den Zustrom aus der Hochhalde Neukieritzsch im Süden und endet im Bereich der Ortslage Neukieritzsch. Das Profil IVb erfasst den nördlichen bzw. östlichen Zustrom der Pleiße und ist wesentlich länger als das Profil IVa, die RKB3 markiert hier den Bereich der Ortslage Neukieritzsch (vgl. Abbildung 6).

Abbildung 13: Konzentrationsentwicklung im Profil 4 (links- bzw. rechtsseitig des Pleißeufers) für pH, Fe und SO4

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Aus den Darstellungen lässt sich eine wechselseitge Parameterentwicklung bei Eisen_{gelöst} und Sulfat erkennen (gilt nicht für die pH-Werte). Hohe Eisengehalte gehen einher mit hohen Sulfatgehalten sowie umgekehrt, dies gilt jedoch nicht für die pH-Werte. Eine eindeutige Tendenz lässt sich aus dem Längsprofil nicht ableiten.

Die pH-Werte schwanken zwischen 3,5 und 6,7, wobei die höchsten Gehalte hier in den Messpunkten (RKB6 und 7) im Nordwesten am Ende des Längsprofils IVb liegen. Die Eisengehalte schwanken zwischen 14 und 4.200 mg/l, die geringsten Gehalte wurden ebenfalls in den 3 letzten Messpunkten des Längsprofils IVb ermittelt. Gleiches gilt für die korrelierenden Sulfatgehalte mit Messwerten von 1.030 mg/l bis 10.400 mg/l. Die beiden Ganglinien verdeutlichen, dass insbesondere das zuströmende Grundwasser im Bereich nördlich der Hochhalde Neukieritzsch (Flussabschnitt Wyhramündung bis etwa zur Ortslage Neukieritzsch) deutlich bergbaulich beeinflusst ist.

Hinsichtlich der bisherigen Untersuchungen sind nur für einige Messpunkte Aussagen möglich. Hervorzuheben ist dabei insbesondere die RKB4 nordwestlich der Hochhalde (Zustrom von Norden), hier war bei gleichbleibenden pH-Werten ein deutlicher Messwertanstieg (mit Trend) bei Eisen und Sulfat erkennbar. Auch die elektr. Leitfähigkeiten sind seit 2010 deutlich angestiegen.

Insgesamt ist aus dem Kippenbereich ein deutlicher Zustrom von bergbaulich beeinflussten Wässern erkennbar, welcher für die Pleiße als Vorflut von nicht unerheblicher Bedeutung ist. Insbesondere der anhaltende Eiseneintrag in diesem Bereich ist von Relevanz.

Vergleich mit bisherigen Messungen

Ergänzend zu den profilbezogenen Darstellungen wurde nachfolgend noch einmal für alle Rammpegel ein Vergleich mit dem bisherigen Messwertniveau dargestellt.

In der Anlage 4.2 sind die bisherigen Messwerte tabellarisch zusammengefasst. Die Anlage 4.4 enthält die grafische Auswertung zur Konzentrationsentwicklung wesentlicher Parameter. In der nachfolgenden Tabelle 10 sind die augenscheinlichen Veränderungen in der Konzentrationsentwicklung für ausgewählte Parameter dargestellt.

Vorbemerkung: Die ermittelten Messwerte werden mit den Ergebnissen der zurückliegenden Messungen verglichen. Dabei werden die aktuellen Messwerte dem bisherigen Schwankungsbereich/Konzentrationsniveau (= bisherige min/max Werte mit Eliminierung von Ausreißern) gegenübergestellt. Soweit möglich werden zudem Trends zur Entwicklung der Konzentrationen benannt.

Für eine bessere Übersichtlichkeit wurden die Messpunkte entlang der Pleiße in identischer Reihenfolge wie im Profil 4 dargestellt. Für die Messpunkte 1301 bis 1310 liegen lediglich Vergleichswerte aus der Erstbeprobung im Januar 2014 vor, auf eine detaillierte Bewertung zur Messwertentwicklung wurde daher verzichtet.

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Tabelle 10: Vergleich mit dem bisherigen Messwertniveau

Lage	Messstel- lenname	рН	Lf	Sulfat	Eisen	Nettoazid.
Kippe	RKB12					
	RKB13		- 1.	_	- 1	
	RKB14		1 *			-
	RKB17					
	RKB18				+	-
	RKB19					
	RKB20		-	+	-	
Pleiße	RKB1	↑				
	RKB2				-	-
	RKB3					- ↓
	RKB4		+ ↑	+ ↑	+ ↑	
	RKB5			-		
	RKB6	ı				
	RKB7		1	+ ↑		
	RKB8			+ ↑	+	
	RKB10					

leer Konzentration im Schwankungsbereich zurückliegender Jahre

- + Überschreitung des bisherigen Messwertniveaus
- Unterschreitung des bisherigen Messwertniveaus
- ↑ / ↓ Trends (wenn erkennbar)

Die Messpunkte auf der <u>Kippe</u> zeigen eine vergleichsweise geringe Dynamik, leidglich der Messpunkt RKB13 (Profil 1) weist bei mehreren Parametern sinkende Konzentrationen auf. In der RKB20 wurde eine Überschreitung bei Sulfat bei gleichzeitiger Unterschreitung des bisherigen Eisenniveaus ermittelt.

Für die <u>pleißenahen Messpunkte</u> (ohne die 10 neu errichteten GWM) zeigte sich bei mehreren Messpunkten eine Überschreitung bei Sulfat mit Trend. Auch Eisen und elektr. Leitfähigkeit wiesen an einigen Punkten Überschreitungen des bisherigen Messniveaus (z.T. mit Trend) auf. Die benannten Anstiege konzentrieren sich dabei auf drei Messpunkte (RKB8, 4 und 7). Davon ist insbesondere die RKB4 erwähnenswert, da hier mit die höchsten Gehalte bei Eisen und Sulfat ermittelt wurden. Die Messstelle liegt rechtsseitig der Pleiße und ist bei ca. 3-4 m unter Gelände im direkten Umfeld der Pleiße verfiltert (ca. 10 m vom Pleißeufer). Seit 2010, sind ein Sulfatanstieg von ca. 30 % und ein Eisenanstieg von ca. 80 % zu verzeichnen (von 2.190 mg/l in 2010 auf 4.000 mg/l in 2015, bei kaum veränderten pH-Werten). Die Wasserstände im Pegel schwanken nur geringfügig. Die Gründe für den Messwertanstieg werden im Anstrom gesehen. Demgegenüber weisen einzelne Messstellen aber sinkende Messniveaus auf.

Für die in <u>2014 erstmalig beprobten Messpunkte</u> sind bedeutsame Messwertanstiege für Sulfat und/oder Eisen_{gelöst} bei den GWM 1304, 1306, 1308 und 1310 erkennbar. Demgegen-

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

über stehen fallende Konzentrationen in den 1309 und 1301. Die pH-Werte haben sich kaum verändert (vgl. Anlage 4.4).

Insgesamt ist daher für den Zustrombereich bergbaulich geprägter Wässer zur Pleiße aktuell in Summe keine relevante Verringerung erkennbar. Konzentrationsverringerungen an einzelnen Messstellen stehen Konzentrationserhöhungen in anderen Messpunkten gegenüber. Die Eintragsfrachten insbesondere von Eisen_{gelöst,} welches u. a. zur Braunfärbung des Gewässers führt, bleiben damit auf hohem Niveau.

6 ZUSAMMENFASSUNG/EMPFEHLUNGEN

Das Grundwassermonitoring am Standort Messplatz Kippe Witznitz erfolgte im Zeitraum vom 10.08. bis 04.09.2015. Es umfasste die Untersuchung von 3 Mehrfachmessstellen mit insgesamt 13 Filterstrecken sowie 28 zu Grundwassermessstellen ausgebauten Rammpegeln. Die Ergebnisse des Grundwassermonitorings 2015 können wie folgt zusammengefasst werden:

Im Ergebnis der Zustandsprüfung wurden bei allen drei Mehrfachmessstellen fehlende Schlösser festgestellt. Diese wurden durch neue Schlösser ersetzt. Bei den Rammpegeln waren einige Messpunkte stark zugesetzt und zum Teil schwer auffindbar (Unterflur). Weitere Beschädigungen oder Hinweise darauf wurden nicht festgestellt.

Die <u>ermittelten Grundwasserstände</u> lagen zwischen +135,66 m NHN auf dem Kippenkörper und +128,78 m NHN bis +130,99 m NHN entlang der Pleiße. Die Pegel entlang der Pleiße liegen auf dem Niveau der bisherigen Messergebnisse. Bei den Pegeln auf der Kippe liegen die Wasserstände im unteren Drittel des bisherigen Messniveaus, in Einzelfällen sogar darunter (2015 war ein vergleichsweise trockenes Jahr).

Zur Berücksichtigung vorherrschender GW-Fließrichtungen wurde der im Rahmen der Hydrodynamischen Jahresberichte 2014 erstellte Hydroisohypsenplan (4. Quartal 2014) für den Hangendgrundwasserleiter (1.1/1.5/1.8/2.5) einschließlich Kippen herangezogen.

Aus den Hydroisohypsen ist die aktuelle Fließrichtung zu entnehmen. Die wesentlichste Aussage zur Grundwasserfließrichtung ist der großräumige Zustrom aus dem Kippengelände zur Pleiße als Vorfluter. Dies betrifft die Kippenbereiche südöstlich von Neukieritzsch und westlich von Kahnsdorf.

Die Ergebnisse zur Grundwasserchemie werden getrennt für die Mehrfachmessstellen sowie die Rammpegel dargestellt und können wie folgt zusammengefasst werden:

Die drei <u>Mehrfachmessstellen</u> befinden sich auf dem Südwesthang der Kippe Witznitz. Sie liegen auf einem Profil, wobei die M1 im oberen, die M2 im mittleren und die M3 im unteren Hangbereich (nahe der Vorflut Pleiße) positioniert wurden. Die jeweiligen Filterelemente (4 bzw. 5 Stück) sind in vergleichbaren Teufenbereichen eingebaut.

Im Ergebnis wiesen nahezu alle Messpunkte der 3 Mehrfachmessstellen saure bis schwach saure Verhältnisse auf. Das Grundwasser wies einen hohen Mineralisationsgrad auf, die elektr. Leitfähigkeiten waren in allen Messpunkten mit 4.280 μ S/cm bis 9.190 μ S/cm deutlich erhöht. Insbesondere Sulfat (bis 12.200 mg/l) und Eisen_{gelöst} (bis 4.000 mg/l) waren in den

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

Proben deutlich erhöht. Weiterhin wiesen alle Messpunkte z. T. sehr hohe Nettoaziditäten (bis 132 mmol/l) auf. Die vergleichsweise niedrigsten Konzentrationen wurden in dem am tiefsten verfilterten Messpunkt M1-5 ermittelt. Die höchsten Messwerte zeigten sich in der M2-2. Insgesamt wird festgestellt, dass sich kein einheitliches teufenbezogenes Muster erkennen lässt, was auf eine ausgeprägte Inhomogenität des abgelagerten Kippenmaterials schließen lässt. Einhergehend mit den niedrigen pH-Werten kommt es am Standort auch zu einer Mobilisierung von Schwermetallen (an 2 Messpunkten analysiert, M2-2 und M3-1). Hervorzuheben sind hier insbesondere die deutlich erhöhten Gehalte bei Nickel (bis 2 mg/l) und Zink (bis 6,6 mg/l). Der Vergleich mit den bisherigen Messungen zeigte, dass am Standort noch eine ausgeprägte Dynamik vorherrscht, dies äußert sich in mehrfachen Anstiegen bei Eisengelöst und Sulfat (mit Trend), welchen jedoch auch Messwertrückgänge gegenüberstehen. Bei Nettoazidität war überwiegend ein Rückgang erkennbar. Bei den pH-Werten liegen nur einzelne Messpunkte außerhalb des bisherigen Messniveaus. Die M3-1 weist hier den niedrigsten bisher ermittelten Messwert auf, die Ursachen sind möglicherweise auf Sickerwassereinträge zurückzuführen. Insgesamt zeigte sich bei der Betrachtung der Messwertentwicklung ebenfalls ein uneinheitliches Bild hinsichtlich der Teufenbereiche, was die Inhomogenität der Kippe bestätigt.

Die zu Grundwassermesstellen ausgebauten <u>Rammpegel</u> befinden sich zum einen entlang des Pleißeufers und zum anderen direkt auf dem Kippenkörper. Schwerpunkt der Auswertung war die Betrachtung der Messwerte und Entwicklungen im Längs- und Querprofil. Hierfür wurden insgesamt 3 Querprofile (vom Kippenplateau zur Pleiße) betrachtet. Weiterhin wurde ein Längsprofil entlang des Pleißeufers ausgewertet.

Die allgemeinen chemischen Verhältnisse lassen sich wie folgt beschreiben. Die Rammpegel wiesen in den meisten Fällen saure Verhältnisse auf (pH im Mittel bei 4,5). Damit einher gingen auch erhöhte Messwerte bei Eisengelöst (im Mittel 1.074 mg/l) und Sulfat (im Mittel 3.748 mg/l) sowie bei der elektr. Leitfähigkeit (im Mittel 4.160 µS/cm). Weiterhin hat das Grundwasser kaum/kein Pufferungsvermögen (Nettoaziditäten bis 140 mmol/l). Infolge der sauren Verhältnisse kam es am Standort zu einer ausgeprägten Mobilisierung von Schwermetallen u. a. bei Zink (im Mittel 2,4 mg/l), Nickel (im Mittel 0,8 mg/l) und Arsen (bis max. 0,037 mg/l). Die Auswertung der Querprofile ergab ein differenziertes Bild. Das Profil im Norden wies insgesamt die geringsten Konzentrationen bei Eisengelöst und Sulfat auf. Am Profil 2 im Westen des UG wurden erhöhte Konzentrationen sowie niedrige pH-Werte auf dem Kippenplateau ermittelt, während auf Pleißeniveau verhältnismäßig geringe Konzentrationen vorlagen. Das Profil 3 im Südosten hingegen weist bei allen Messpunkten erhöhte Konzentrationen sowie ein zum Teil deutlich schwankendes Niveau bei durchgehend sauren Verhältnissen auf. Die Messwerte auf der Kippe zeigten über den Betrachtungszeitraum insgesamt eine vergleichsweise geringe Dynamik auf. Hervorzuheben ist die RKB13 (Profil 1 im Norden), welche bei mehreren Parametern sinkende Konzentrationen aufwies (mit Trend). Das Längsprofil (Profil 4, entlang der Pleiße) beginnend an der Wyhraeinmüdnung repräsentiert den direkten Grundwasserzustrom aus der Kippe in die Vorflut. Die Auswertung ergab eine wechselseitige Parameterentwicklung zwischen Eisengelöst und Sulfat, unabhängig von den pH-Werten. Die Werte zeigen überwiegend sehr saure Verhältnisse, erst die Messpunkte im Nordwesten am Ende des Profils zeigen moderate Verhältnisse an. Gleiches gilt auch für die

Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

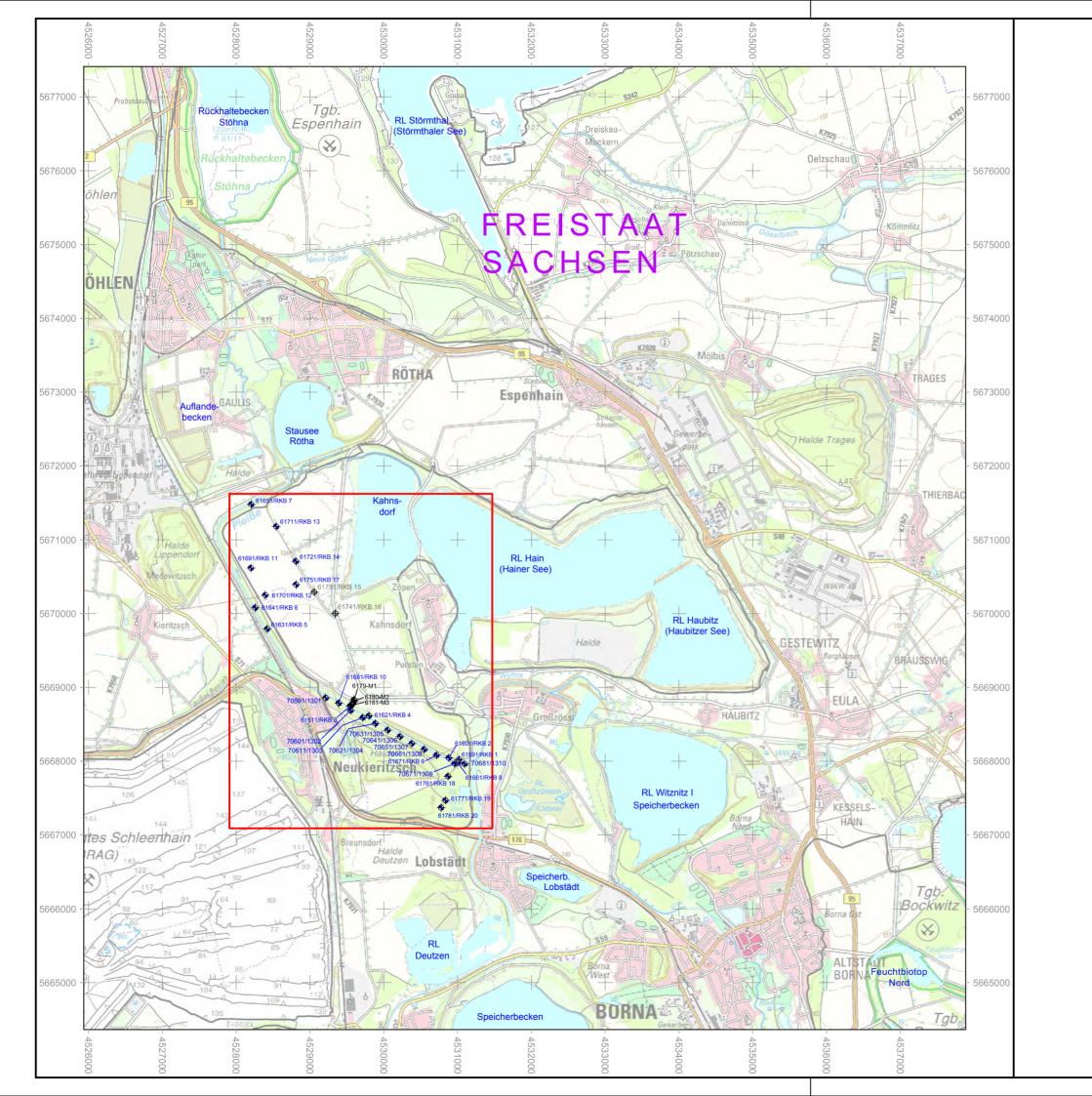
Parameter Eisen_{gelöst} und Sulfat, hier wurden mit Ausnahme der Messpunkte im Nordwesten und Westen sehr hohe Konzentrationen ermittelt. Die hohen Konzentrationen lassen sich dabei auf den Flußabschnitt von der Wyhraeinmündung bis etwa auf Höhe der Ortslage Neukieritzsch eingrenzen. Der Bereich wird von Süden von der Hochhalde Neukieritzsch sowie von der Kippe im Norden angeströmt. Der Vergleich mit früheren Messungen zeigte bei den RKB 4, 7 und 8 nennenswerte Messwertanstiege bei Eisen_{gelöst}, Sulfat sowie elektr. Leitfähigkeit. Hervorzuheben ist hier die RKB4, wo seit 2010 ein Sulfatanstieg um ca. 30 % und ein Eisenanstieg um ca. 80 % erfolgten. Die Gründe hierfür werden im Anstrom gesehen. Den Messwertanstiegen gegenüber stehen aber auch einzelne Messstellen mit sinkenden Konzentrationen.

Die Auswertung der Längsprofile sowie die Messwerte entlang des Querprofils entlang der Pleiße belegen einen höheren Eintrag aus dem Bereich im Süden des UG. Dies entspricht auch dem in /7/ dargestellten unterschiedlichen Kippeninventar der einzelnen Kippzonen. Die abgelagerten Substrate im Süden haben ein höheres Versauerungspotential, was sich auch in den Messwerten widerspiegelt. Weiterhin sind die Unterschiede möglicherweise auch in der längeren Liegezeit der Hochhalde Neukieritzsch begründet.

Der Vergleich mit dem bisherigen Messniveau zeigte, dass es in einzelnen Messstellen zu Erhöhungen der Konzentrationen, in anderen zu einer Verringerung der Eintragsfrachten der maßgebenden Parameter Eisen_{gelöst} und Sulfat kommt. In Summe sind die Eintragsfrachten durch Exfiltration aus dem Kippengrundwasserleiter, insbesondere bei Eisen_{gelöst,} nach wie vor erheblich. Da die Lösungsprozesse in der Kippe über lange Zeiträume erfolgen, ist auch mittelfristig mit anhaltend erhöhten bergbaulich spezifischen Einträgen zu rechnen.

Empfehlung zum weiteren Vorgehen

Eine Fortführung des Grundwassermonitorings an den Mehrfachmessstellen sowie an den Rammpegeln wird zunächst im 1 Jahresrhythmus empfohlen. Dabei sollte darauf geachtet werden, die Probenahme bei Niedrigwasser der Pleiße durchzuführen, um die Zugänglichkeit der im Uferbereich gelegenen Messpunkte zu gewährleisten. Es ist zu prüfen, ob die Anzahl der zu untersuchenden Messpunkte linksseitig der Pleiße reduziert werden könnte. Weiterhin wäre die Errichtung einer neuen GWM als Ersatz für die nicht mehr vorhandenen RKB15 und 16 zu prüfen.


Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Projekt Nr. 15-002-40

Hubert Beyer Umwelt Consult GmbH, Strümpellstraße 6, 04289 Leipzig, Telefon: 0341 98458 50

7 QUELLEN- UND LITERATURVERZEICHNIS

- /1/ Montanhydrologisches Monitoring Grundwassermonitoring § 2 und § 3 (Los 2), Sanierungsbereich Westsachsen/Thüringen, Anlage 2 zum Leistungsverzeichnis 2015.
- Leistungsbeschreibung zum Montanhydrologischen Monitoring Grundwassermonitoring § 2 und § 3, Sanierungsbereich Westsachsen/Thüringen, Ausführungszeitraum 01/2015 06/2016.
- /3/ Hydrodynamische Jahresberichte 4. Quartal 2014, Hydroisohypsen für den Hangendgrundwasserleiter (1.1/1.5/1.8/2.5) einschließlich Kippen, Ingenieurbüro für Grundwasser GmbH; Leipzig, 2015.
- /4/ Bericht Monitoring Messplatz Kippengebiet Witznitz, Beprobung 05/10 11/13, G.E.O.S. Ingenieurgesellschaft mbH, Halle/S., 20.12.2013.
- /5/ Bericht Monitoring Messplatz Kippengebiet Witznitz, Beprobungen 04/09 12/09, G.E.O.S. Ingenieurgesellschaft mbH, Halle/S., 29.04.2010.
- /6/ Bericht Monitoring Messplatz Kippengebiet Witznitz, Beprobungen 11/07 03/09, G.E.O.S. Ingenieurgesellschaft mbH, Halle/S., 06.04.2009.
- /7/ Auswirkungen des Grundwasserwiederanstiegs und der daraus folgenden Exfiltration eisenbelasteter Grundwässer aus den Kippen des ehemaligen Tagebaus Witznitz in die Fließgewässer Pleiße und Wyhra, Teilbericht 2: Ermittlung der geologischen Verhältnisse der Kippe und Quantifizierung der Stoffmengenverteilung (Eisen/Schwefel) in der Kippe, Ingenieurbüro für Grundwasser Leipzig (IBGW), Leipzig, 20.04.2009.
- /8/ Merkblatt Montanhydrologisches Monitoring in der LMBV mbH vom 30.11.2007.
- /9/ LAWA (2004): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser Länderarbeitsgemeinschaft Wasser (LAWA); Düsseldorf, Dezember 2004.
- /10/ LAWA (1994): Länderarbeitsgemeinschaft Wasser: Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden; Stuttgart, 01/1994.

Legende:

Untersuchungsgebiet

Grundwassermessstelle mit Markscheidernummer / Messstellenname

Multilevel-Messstelle

⊕ 61741/RKB 16 nicht mehr vorhanden

Anlage 1.1

Ergebnisbericht Montanhydrologisches Monitoring Westsachsen/Thüringen

> Monitoring Messplatz Kippe Witznitz Beprobung August - September 2015

Übersichtsplan mit Darstellung der untersuchten Messstellen

Auftraggeber:

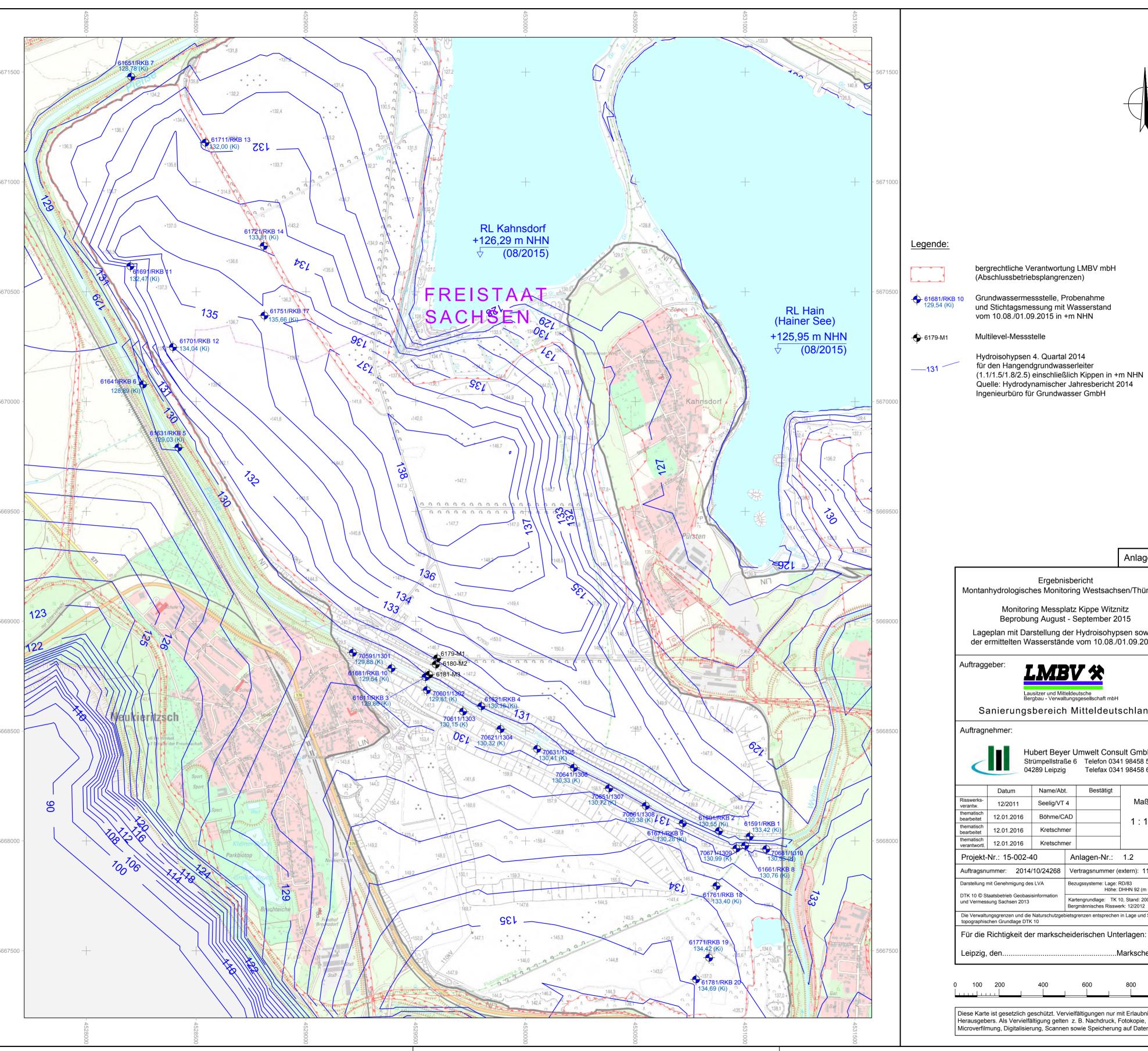
Lausitzer und Mitteldeutsche Bergbau - Verwaltungsgesellschaft mbH

Sanierungsbereich Mitteldeutschland

Auftragnehmer:

Hubert Beyer Umwelt Consult GmbH Strümpellstraße 6 Telefon 0341 98458 50 04289 Leipzig Telefax 0341 98458 60

	Datum	Name/Abt.	Bestätigt	
Risswerks- verantw.	12/2011	Seelig/VT 4		Maßstab
thematisch bearbeitet	12.01.2016	Böhme / CAD		1:50 000
thematisch bearbeitet	12.01.2016	Kretschmer		1.30 000
thematisch verantwortl.	12.01.2016	Kretschmer		


Projekt-Nr.: 15-002-40	Anlagen-Nr.: 1.1
Auftragsnummer: 2014/10/24268	Vertragsnummer (extern): 11008379
Darstellung mit Genehmigung des LVA	Bezugssysteme: Lage: RD/83 Höhe: DHHN 92 (m über NHN)
DTK 50 © Staatsbetrieb Geobasisinformation und Vermessung Sachsen 2012	Kartengrundlage: DTK 50, Stand: 2004-2006 Bergmännisches Risswerk

Die Verwaltungsgrenzen und die Naturschutzgebietsgrenzen entsprechen in Lage und Stand der topographischen Grundlage DTK 50

Für die Richtigkeit der markscheiderischen Unterlagen:

500 1 000 2 000 3 000 4 000 5 000m

Diese Karte ist gesetzlich geschützt. Vervielfältigungen nur mit Erlaubnis des Herausgebers. Als Vervielfältigung gelten z. B. Nachdruck, Fotokopie, Microverfilmung, Digitalisierung, Scannen sowie Speicherung auf Datenträger.

bergrechtliche Verantwortung LMBV mbH

Grundwassermessstelle, Probenahme

Hydroisohypsen 4. Quartal 2014 für den Hangendgrundwasserleiter (1.1/1.5/1.8/2.5) einschließlich Kippen in +m NHN Quelle: Hydrodynamischer Jahresbericht 2014

Anlage 1.2

Ergebnisbericht Montanhydrologisches Monitoring Westsachsen/Thüringen

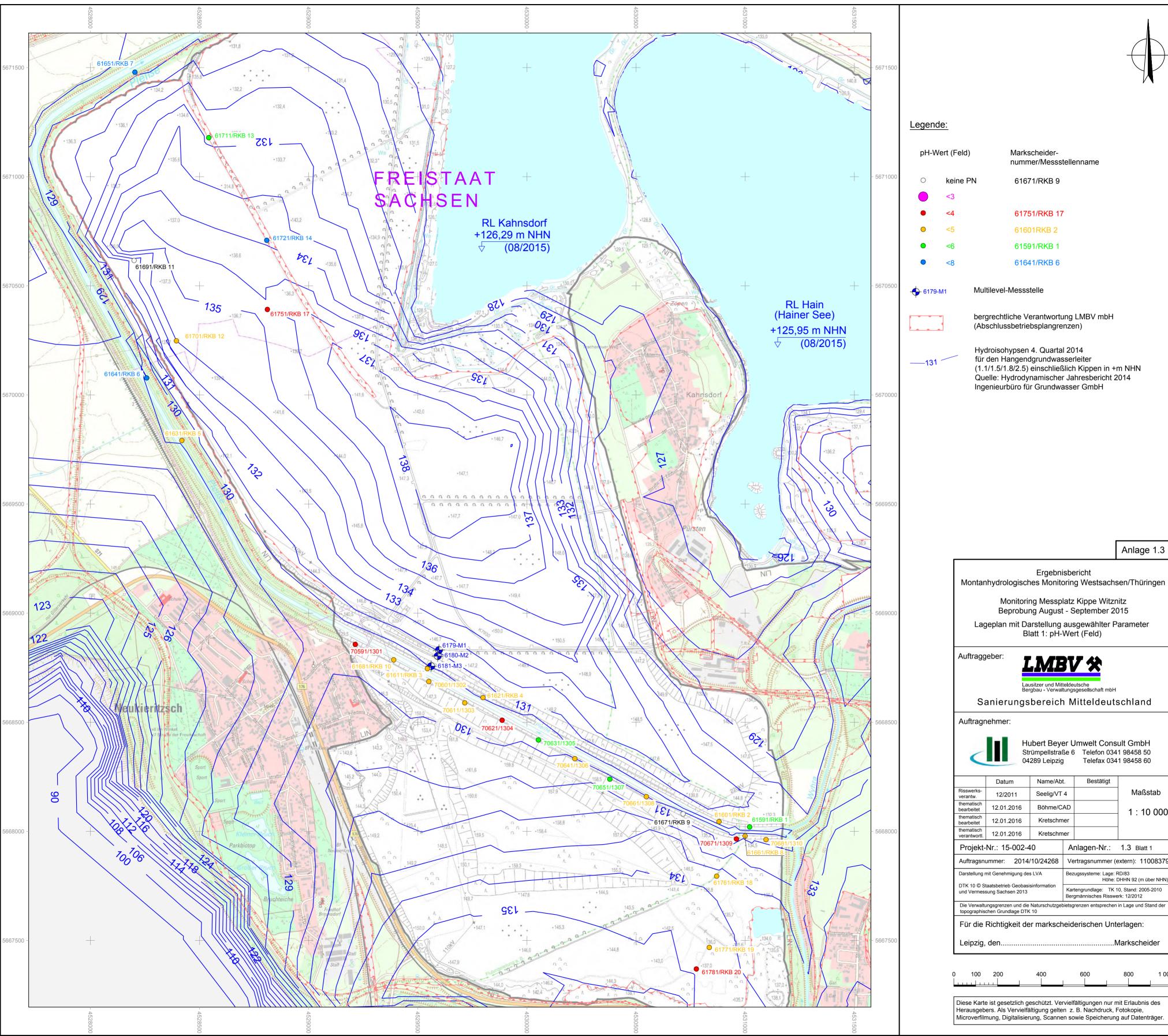
> Monitoring Messplatz Kippe Witznitz Beprobung August - September 2015

Lageplan mit Darstellung der Hydroisohypsen sowie der ermittelten Wasserstände vom 10.08./01.09.2015

Sanierungsbereich Mitteldeutschland

Hubert Beyer Umwelt Consult GmbH Strümpellstraße 6 Telefon 0341 98458 50 Telefax 0341 98458 60

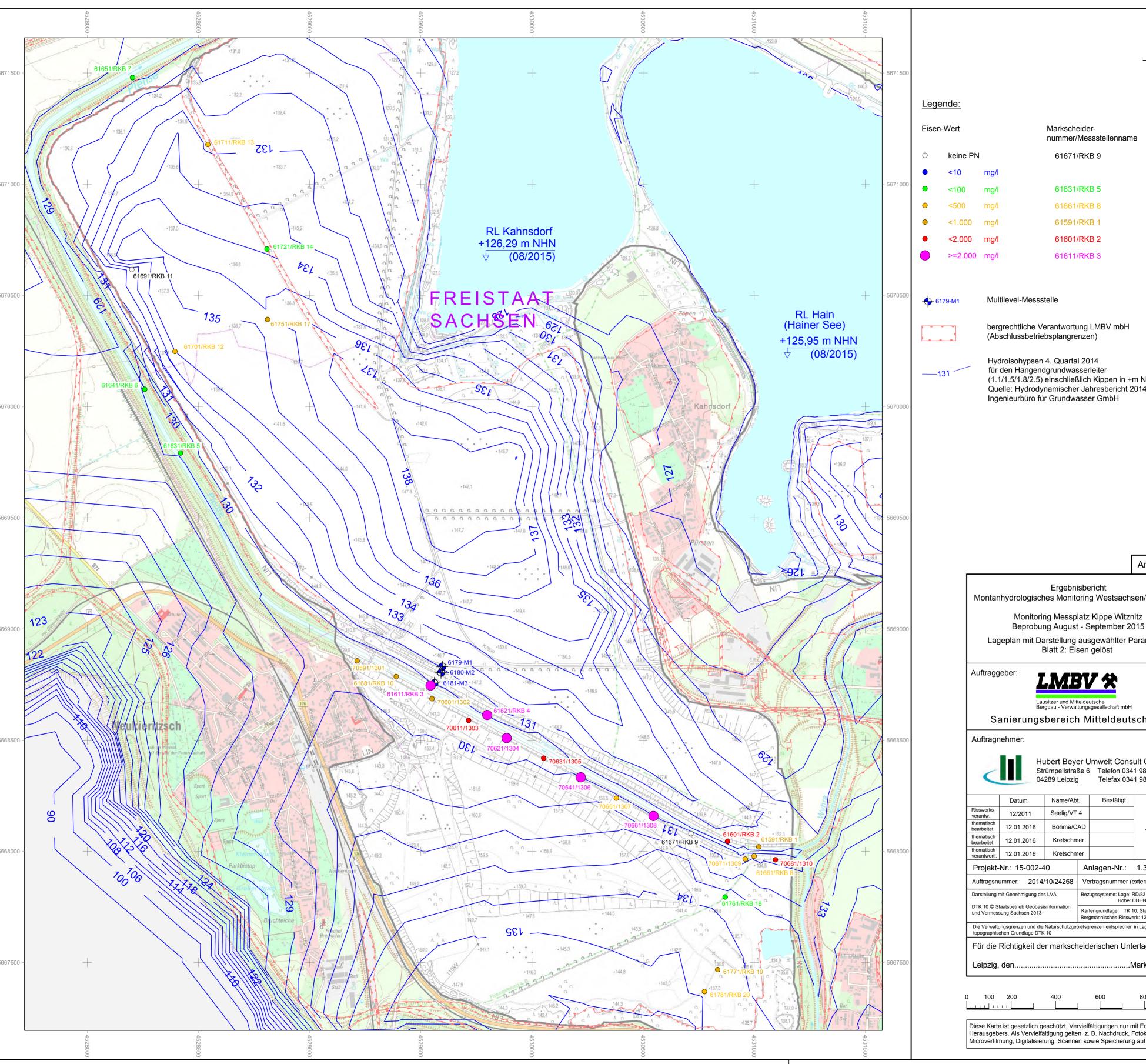
Bestätigt


rks- v.	12/2011	Seelig/VT	4		Ma	aßstab
isch itet	12.01.2016	Böhme/C	AD		1 .	10 000
isch itet	12.01.2016	Kretschm	er		' '	10 000
isch vortl.	12.01.2016	Kretschm	er			
ekt-Nr.: 15-002-40				nlagen-Nr.:	1.2	

Projekt-Nr., 15-002-40	Alliagen-Ni 1.2			
Auftragsnummer: 2014/10/24268	Vertragsnummer (extern): 11008379			
Darstellung mit Genehmigung des LVA	Bezugssysteme: Lage: RD/83 Höhe: DHHN 92 (m über NHN)			
DTK 10 © Staatsbetrieb Geobasisinformation und Vermessung Sachsen 2013	Kartengrundlage: TK 10, Stand: 2005-2010 Bergmännisches Risswerk: 12/2012			
Die Verwaltungsgrenzen und die Naturschutzge	bietsgrenzen entsprechen in Lage und Stand der			

..Markscheider

0	100	200	400	600	800	1 000m


Diese Karte ist gesetzlich geschützt. Vervielfältigungen nur mit Erlaubnis des Herausgebers. Als Vervielfältigung gelten z.B. Nachdruck, Fotokopie, Microverfilmung, Digitalisierung, Scannen sowie Speicherung auf Datenträger.

	Dataiii	rtarrio,, tot.	2001.01.91	
Risswerks- verantw.	12/2011	Seelig/VT 4		Maßstab
hematisch bearbeitet	12.01.2016	Böhme/CAD		1:10 000
hematisch bearbeitet	12.01.2016	Kretschmer		1.10000
hematisch /erantwortl.	12.01.2016	Kretschmer		

Projekt-Nr.: 15	-002-40	Anlagen-Nr.: 1.3 Blatt 1				
Auftragsnummer:	2014/10/24268	Vertragsnummer (extern): 11008379				
Darstellung mit Genehm		Bezugssysteme: Lage: RD/83 Höhe: DHHN 92 (m über NHN)				
DTK 10 © Staatsbetrieb und Vermessung Sachs		Kartengrundlage: TK 10, Stand: 2005-2010 Bergmännisches Risswerk: 12/2012				

1 000m

Markscheidernummer/Messstellenname 61671/RKB 9 61631/RKB 5

61661/RKB 8 61591/RKB 1 61601/RKB 2

61611/RKB 3

bergrechtliche Verantwortung LMBV mbH (Abschlussbetriebsplangrenzen)

> für den Hangendgrundwasserleiter (1.1/1.5/1.8/2.5) einschließlich Kippen in +m NHN Quelle: Hydrodynamischer Jahresbericht 2014 Ingenieurbüro für Grundwasser GmbH

> > Anlage 1.3

Ergebnisbericht Montanhydrologisches Monitoring Westsachsen/Thüringen

Beprobung August - September 2015

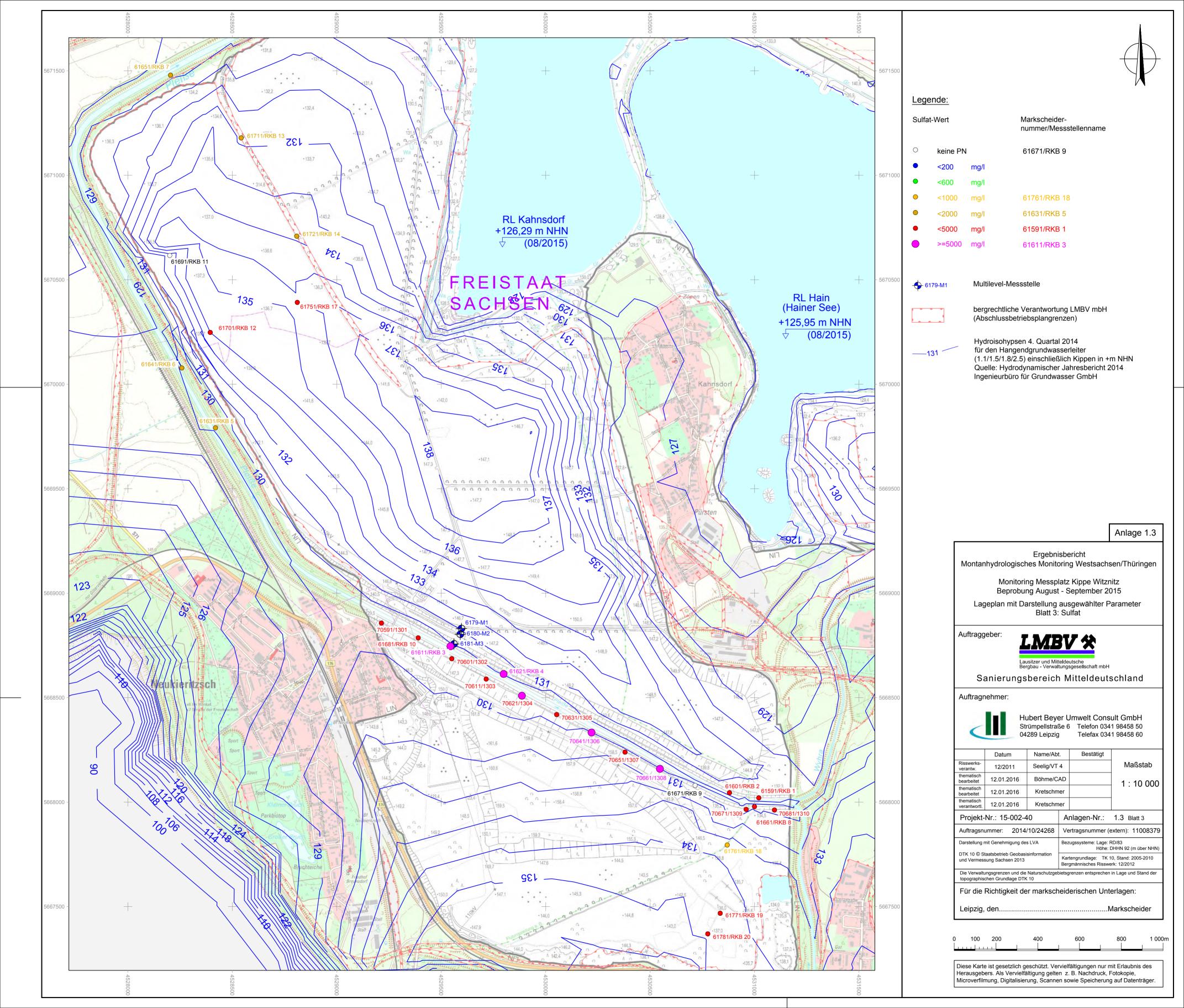
Lageplan mit Darstellung ausgewählter Parameter Blatt 2: Eisen gelöst

Sanierungsbereich Mitteldeutschland

Hubert Beyer Umwelt Consult GmbH Strümpellstraße 6 Telefon 0341 98458 50 Telefax 0341 98458 60

	Datum	Name/Abt.	Bestätigt	
erks- tw.	12/2011	Seelig/VT 4		Maßstab
atisch eitet	12.01.2016	Böhme/CAD		1 : 10 000
atisch eitet	12.01.2016	Kretschmer		1.10000
atisch twortl.	12.01.2016	Kretschmer		

Anlagen-Nr.: 1.3 Blatt 2 Vertragsnummer (extern): 11008379 Bezugssysteme: Lage: RD/83 Höhe: DHHN 92 (m über NHN) Kartengrundlage: TK 10, Stand: 2005-2010 Bergmännisches Risswerk: 12/2012


Die Verwaltungsgrenzen und die Naturschutzgebietsgrenzen entsprechen in Lage und Stand der topographischen Grundlage DTK 10

Für die Richtigkeit der markscheiderischen Unterlagen:

..Markscheider

800

Diese Karte ist gesetzlich geschützt. Vervielfältigungen nur mit Erlaubnis des Herausgebers. Als Vervielfältigung gelten z. B. Nachdruck, Fotokopie, Microverfilmung, Digitalisierung, Scannen sowie Speicherung auf Datenträger.

Tabellarische Zusammenstellung der Ergebnisse der Grundwasserstandsmessung

PEGNR	MENA	Rechtswert	Hochwert	ROK	Filter-OK	Filter-UK	Sohle	GWL- Zuordnung	Datum	Wasser- spiegel	Lotung	Messwert	Anmerkung
				[mNHN]	[muROK]	[muROK]	[muROK]			[muROK]	[muROK]	[mNHN]	
Grundwas	serstände	August/Septe	ember 2015										
61591	RKB1	45 31 020,0	56 68 020,4	130,44	3,0	4,0	4,04	Ki	01.09.15	0,02	4,07	130,42	
61601	RKB2	45 30 879,7	56 68 044,9	130,55	3,2	4,2	4,15	Ki	01.09.15	•	4,10	-	Sebakappe unter Wasser
61611	RKB3	45 29 543,9	56 68 745,8	129,86	3,2	4,2	4,16	Ki	01.09.15	0,00	3,55	129,86	
61621	RKB4	45 29 798,5	56 68 613,2	130,20	3,1	4,1	4,10	Ki	01.09.15	0,04	4,00	130,16	
61631	RKB5	45 28 419,1	56 69 791,1	129,11	3,0	4,0	4,01	Ki	01.09.15	0,08	3,90	129,03	
61641	RKB6	45 28 258,0	56 70 077,8	129,02	1,1	2,1	2,12	Ki	01.09.15	0,13	2,19	128,89	
61651	RKB7	45 28 204,1	56 71 479,0	129,07	2,5	3,5	3,47	Ki	01.09.15	0,29	3,32	128,78	
61661	RKB8	45 30 999,3	56 67 979,0	130,83	3,1	4,1	4,13	Ki	10.08.15	0,07	4,08	130,76	
61671	RKB9	45 30 715,0	56 68 080,2	130,29	3,1	4,1	4,09	Ki	10.08.15	1	4,08	-	Sebakappe unter Wasser
61681	RKB10	45 29 389,5	56 68 786,1	129,54	3,0	4,0	4,04	Ki	10.08.15	ı	4,08	-	Sebakappe unter Wasser
61691	RKB11	45 28 200,3	56 70 616,2	137,71	5,0	6,0	6,01	Ki	01.09.15	5,24	5,99	132,47	
61701	RKB12	45 28 394,2	56 70 247,9	138,23	5,0	6,0	6,03	Ki	01.09.15	4,19	5,87	134,04	
61711	RKB13	45 28 542,3	56 71 178,6	134,82	5,0	6,0	6,02	Ki	01.09.15	2,82	6,08	132,00	
61721	RKB14	45 28 808,0	56 70 708,5	135,73	5,0	6,0	6,03	Ki	01.09.15	1,92	6,12	133,81	
61751	RKB17	45 28 810,9	56 70 391,5	137,95	4,8	5,8	5,75	Ki	01.09.15	2,29	5,69	135,66	
61761	RKB18	45 30 868,9	56 67 795,0	138,51	5,1	6,1	6,11	Ki	10.08.15	5,11	6,11	133,40	
61771	RKB19	45 30 835,3	56 67 468,3	137,64	4,9	5,9	5,94	Ki	10.08.15	3,22	6,11	134,42	
61781	RKB20	45 30 775,8	56 67 369,7	138,37	4,0	5,0	4,97	Ki	10.08.15	3,68	5,09	134,69	
70591	1301	45 29 213,5	56 68 856,9	134,95	5,9	6,9	6,95	K	10.08.15	5,07	7,02	129,88	
70601	1302	45 29 550,3	56 68 686,5	133,81	5,0	6,0	6,01	K	10.08.15	4,00	5,62	129,81	
70611	1303	45 29 715,0	56 68 589,0	136,21	7,0	8,0	8,01	K	10.08.15	6,06	8,00	130,15	
70621	1304	45 29 886,1	56 68 509,4	133,51	5,0	6,0	6,01	K	10.08.15	3,19	6,03	130,32	
70631	1305	45 30 052,4	56 68 419,0	134,20	5,0	6,0	6,00	K	10.08.15	3,79	6,02	130,41	
70641	1306	45 30 219,4	56 68 333,3	133,96	5,0	6,0	5,96	K	10.08.15	3,63	6,01	130,33	
70651	1307	45 30 379,6	56 68 239,3	135,04	6,0	7,0	7,04	K	10.08.15	4,32	7,02	130,72	
70661	1308	45 30 546,7	56 68 159,5	133,83	5,0	6,0	6,03	K	10.08.15	3,45	6,02	130,38	
70671	1309	45 30 959,5	56 67 965,5	135,65	6,1	7,1	7,05	K	10.08.15	4,66	7,03	130,99	
70681	1310	45 31 095,0	56 67 962,4	135,75	5,9	6,9	6,95	K	10.08.15	5,20	7,02	130,55	

LMBV VT3 Seite 1 von 1

Firma Anschrift	Hubert Beyer I Strümpellstraß			Tel.: 0341-9 Fax: 0341-9				
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		26.08.15	Uhrzeit:	12:16	Proben-Nr.	150772049		
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	1BV		
Bezeichnung der	Messstelle:		M1-1			61791		
Lage:	RW:	4529	9596,5	HW:	5668	8830,9		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	147,27	Rohr-/Schachto	lurchmesser:	11,5 cm		
Filterlage:		von:	20,8	Bohrdurchmess	ser:	36,8 cm		
[m u Messpunkt]		bis:	21,8	1,5-faches Filte	rvolumen:	m³		
Filterkiesschüttun [m u Messpunkt]	ıg:	von: bis:	20,4	GW-Spiegel: 1. Tag (nur bei	Datum	m		
[aooopa]		DIS.	22,2	2. Tag (nur ber		m		
Teufe der Messste	elle:	Ausbau [m]	55,67	3. Tag pumpen)		m		
		gelotet [m]		vor Probenah.:		m		
				nach Probenahm	e:	m		
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
			21,0					
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х					
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006		
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	13,5	24,0	5,23	7750	1,58	318		
unten]						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	X stark			
,	Trübung:	Konie	Conwacii	millor	X			
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch		
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl		
	Ausgasung:	X	Bodensatz:	X				
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dimkel	Kunststofffla	sche: X]			
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	х		Labor:	26.08.2015	17:30		
Bemerkungen:	Multilevel-Mess	stelle						
	Betriebsdruck F	P = 3,6 bar						
				Probenehmer	l.M.	20		

Datum:		26.08.2	2015	-				GW-Me	essstel	le:	617	'91
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Libracit		°C1		LI	I f [(C/oml	021	[ma/l]	Γh	[m\/]	Mon	0
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
12:10	22,0		5,47	,	5380	,	3,67	,	99	,		0,0
12:16	13,5		5,23		7750		1,58		103			1,0
	-											
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
Redoxpoter	ntial					·		,		J		
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,5	N	/lesswe	rt	1	03	End	lwert	31	8
(Redoxpu	ıffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,23		+	34,5		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,23		+	0,2		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	ł
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung												
	ΤĮ	[°C]	р	Н	Lf [µ	S/cm]	O2 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK	[l/min]
neuer Wert												
Signum												

Firma Anschrift	_	Umwelt Consu e 6, 04289 Leip		Tel.: 0341-9 Fax: 0341-9		Seite 1/	
	PRO	BENAHMEPI	ROTOKOLL -	Grundwasser			
Datum:		26.08.15	Uhrzeit:	12:42	Proben-Nr.	150772050	
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	Auftr.geb.: LMBV		
Bezeichnung der	Messstelle:		M1-2	_		61792	
Lage:	RW:	4529	9596,5	HW:	5668	8830,9	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe:		[m ü NHN]	147,27	Rohr-/Schachto	lurchmesser:	11,5 cm	
Filterlage:		von:	26,8	Bohrdurchmess	ser:	36,8 cm	
[m u Messpunkt]		bis:	27,8	1,5-faches Filte	rvolumen:	m³	
Filterkiesschüttun [m u Messpunkt]	ng:	von: bis:	26,4 28,2	GW-Spiegel: 1. Tag (nur bei	Datum	m	
[aeeepa]		DIS.	20,2	2. Tag (nur ber		m	
Teufe der Messste	elle:	Ausbau [m]	55,67	3. Tag pumpen)		m	
		gelotet [m]		vor Probenah.:		m	
				nach Probenahm	e:	m	
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich	
			27,0				
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х				
Abpumpen:	Förderstrom [I/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben	15,6	24,0	5,61	6390	2,22	325	
unten	1]					
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun	
an der Probe (Bitte ankreuzen)	Färbung:	X keine	schwach	mittel	stark		
	Trübung:		X				
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch	
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl	
	Ausgasung:	Х	Bodensatz:	Х			
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]		
Konservierung:	s. Bericht						
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit	
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30	
Bemerkungen:	Mulitlevel-Mess	stelle					
	Betriebsdruck F	P = 4,2 bar					
				Probenehmer	l.41	20	

Datum:		26.08.2	2015		GW-Messstelle: 61792					792		
Probenehm	er:	Paßlac	k/Wacł	nsmann		1						
Bemerkung	en:											
Uhrzeit	TI	°C]	,	,LJ	l f fu	S/oml	∩ 2 I	[ma/l]	Eh	[m\/]	Mon	0
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]
12:36	18,3		5,68		5540	,	3,18		114			0,0
12:42	15,6		5,61		6390		2,22		111			1,0
oben: Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe)	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	214	15,6	N	/lesswe	rt	1	11	End	lwert	32	25
(Redoxpu	ffer)			(Aç	g/AgCl/K	(CI)						
		1/		11						104	14 1101	
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1		
bei pH<8,2:		K _{B8,2}	=	pH₀	5,61		+	25,1		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	5,61		+	0,5		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH_0			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung												
raiding	Т[°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK	[l/min]
neuer Wert												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9845850 Seite Fax: 0341-9845860			
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser			
Datum:		26.08.15	Uhrzeit:	12:56	Proben-Nr.	150772051	
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	//BV	
Bezeichnung der I	Messstelle:		M1-3			61793	
Lage:	RW:	4529	596,5	HW:	5668	3830,9	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe:		[m ü NHN]	147,27	Rohr-/Schachtd	urchmesser:	11,5 cm	
Filterlage:		von:	32,8	Bohrdurchmess		36,8 cm	
[m u Messpunkt] Filterkiesschüttun	ıa.	bis: von:	33,8 32,2	1,5-faches Filte GW-Spiegel:	rvolumen: Datum	m³	
[m u Messpunkt]	9.	bis:	34,3	1. Tag (nur bei	Datum	m	
				2. Tag 3 × Ab-		m	
Teufe der Messste	elle:	Ausbau [m]	55,67	3. Tag pumpen) vor Probenah.:		m	
		gelotet [m]		nach Probenahm	e:	m m	
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich	
			33,0				
Art der Probenahn	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х				
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben	14,9	24,0	5,86	5540	1,31	251	
unten		j					
Wahrnehmungen an der Probe	Fäsh	farblos	weiß	gräulich X	gelb	braun X	
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	^	
	Trübung:	ohne	aromatisch	faulig	X jauchig	chemisch	
	Geruch:	Offine	aromatisch	X	jaucing	CHEITISCH	
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl	
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X			
Konservierung:	s. Bericht	12	Lene .				
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit 17:30	
Probentransport/-		X		Labor:	26.08.2015	17.30	
Bemerkungen:	Multilevel-Mess						
	Betriebsdruck F	- = 4,8 par					
	-		<u> </u>				
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla	

Datum:		26.08.2	2015	GW-Messstelle: 61793					793			
Probenehm	er:	Paßlac	k/Wacl	nsmann	ı							
Bemerkung	en:											
Libracit		°C1		,LI	1 f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	0
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
12:50	16,9		5,76	,	4720	,	3,65	,	44	,		0,0
12:56	14,9		5,86		5540		1,31		37			1,0
	-											
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	214	14,9	N	/lesswe	rt	3	37	End	lwert	25	51
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	М НСІ	
bei pH<8,2:		K _{B8,2}	=	pH ₀	5,86		+	15,6		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH_0	5,86		+	1,3		ml 0,1	М НСІ	
bei pH<4,3:		$K_{B4,3}$	=	pH_0			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		750	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
	_	°C]		H Lunton		S/cm]		[mg(l]		[mV]	Wsp.	Q [[/min]
neuer Wert	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRC	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		26.08.15	Uhrzeit:	13:16	Proben-Nr.	150772052
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der I	Messstelle:		M1-4			61794
Lage:	RW:	4529	596,5	HW:	5668	8830,9
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	147,27	Rohr-/Schachtd	urchmesser:	11,5 cm
Filterlage:		von:	38,8	Bohrdurchmess		36,8 cm
[m u Messpunkt] Filterkiesschüttun	ıa.	bis: von:	39,8 38,3	rvolumen: Datum	m³	
[m u Messpunkt]	·y.	bis:	40,2	GW-Spiegel: 1. Tag (nur bei	Datum	m
				2. Tag 3 × Ab-		m
Teufe der Messste	elle:	Ausbau [m]	55,67	3. Tag pumpen) vor Probenah.:		m
		gelotet [m]		nach Probenahm	e:	m m
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			39,0			
Art der Probenahn	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х			
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	14,4	24,0	5,54	7030	1,79	288
unten						
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich X	gelb	braun
(Bitte ankreuzen)	· ·	keine	schwach	mittel	stark	
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch
	Geruch:	X		g	jaaronig	
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X		
Konservierung:	s. Bericht	12	IZOU L		F :	
		Kühlbox X	Kühlschrank	Übergabe	Datum 26.08.2015	Uhrzeit 17:30
Probentransport/-				Labor:	20.30.2010	
Bemerkungen:	Multilevel-Mess Betriebsdruck F					
		-,				
Institution (Stempel)				Probenehmer (Unterschrift)	Publade	ala

Datum:		26.08.2	2015	GW-Messstelle: 61794						794		
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:											
Libracit		°C1		LI	I f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	0
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
13:10	16,3		5,63	,	6370	,	3,61	,	75	,		0,0
13:16	14,4		5,54		7030		1,79		73			1,0
	-											
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	215	14,4	N	/lesswe	rt	7	73	End	lwert	28	38
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2:		K _{B8,2}	=	pH ₀	5,54		+	32,1		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,54		+	0,5		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	ł
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	für Fe(II)):	1:		
Prüfung												
_	_	°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9845850 Fax: 0341-9845860			
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser			
Datum:		26.08.15	Uhrzeit:	13:51	Proben-Nr.	150772056	
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	/IBV	
Bezeichnung der l	Messstelle:		M1-5			61795	
Lage:	RW:	4529	596,5	HW:	5668	3830,9	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe: Filterlage:		[m ü NHN] von:	147,27 53,8	Rohr-/Schachtd		11,5 cm 32,5 cm	
[m u Messpunkt] Filterkiesschüttun	g:	bis: von:	54,8 53,3	1,5-faches Filte GW-Spiegel:	m³		
[m u Messpunkt] Teufe der Messste	elle:	bis: Ausbau [m]	55,3 55,67	1. Tag (nur bei 2. Tag 3 × Ab- 3. Tag pumpen)		m m m	
		gelotet [m]		vor Probenah.: nach Probenahm		m m	
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m] 54,0	ob. Bereich	mittl. Bereich	unt. Bereich	
Art der Probenahn	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. P	umpentyp angeben)		х				
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben		24,0	5,29	4280	2,64	325	
Wahrnehmungen an der Probe		farblos	weiß	gräulich X	gelb	braun	
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark		
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch	
	Geruch:	X ja nein		ja nein	n. Chlor	n. Min.Öl	
	Ausgasung:	X	Bodensatz:	X			
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X			
Konservierung:	s. Bericht	Kühlbox	Kühlschrank		Datum	Uhrzeit	
Probentransport/-	lagerung:	X	Ranisonalik	Übergabe Labor:	26.08.2015	17:30	
Bemerkungen:	Multilevel-Mess Betriebsdruck F			-			
Institution (Stempel)				Probenehmer (Unterschrift)	Publade	00	

Datum:		26.08.2	2015		GW-Messstelle: 61795					795		
Probenehm	er:	Paßlac	k/Wacł	nsmann		1						
Bemerkung	en:											
Uhrzeit	Τſ	°C]	n	,U	l f fu	S/oml	∩ 2 l	[ma/l]	Eh	[m\/]	Wen	0
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]
13:45	21,2		5,31		4180	·	4,31		111			0,0
13:51	20,5		5,29		4280		2,64		115			1,0
oben: Redoxpoter	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	:	1)	nur wenn	durchgefü	hrt	
ποσοκροίοι	itiai	mV	°C				n	nV			m	V
Nullwe	rt	210	20,5	N	/lesswe	rt	1	15	End	lwert	32	
(Redoxpu	ıffer)			(Ag	g/AgCI/K	(CI)						
		1.7										
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,29		+	15,9		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH_0	5,29		+	6,5		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung												
		°C]		Н		S/cm]		mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		26.08.15	Uhrzeit:	14:25	Proben-Nr.	150772057
Objekt:		Messplatz k	Kippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		M2-1]	61801
Lage:	RW:	4529	9591,0	HW:	5668	8802,6
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	142,82	Rohr-/Schachto	lurchmesser:	11,5 cm
Filterlage:		von:	16,2	Bohrdurchmess		32,5 cm
[m u Messpunkt]		bis:	17,2	1,5-faches Filte		m³
Filterkiesschüttun [m u Messpunkt]	ng:	von: bis:	15,7 17,7	GW-Spiegel: 1. Tag (nur bei	Datum	m
		DIS.	11,1	2. Tag (Har ber		m
Teufe der Messste	elle:	Ausbau [m]	36,02	3. Tag pumpen)		m
		gelotet [m]		vor Probenah.:		m
				nach Probenahm	e:	m
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Dannelkelhen	17,0			
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)		X			
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,3	25,0	5,58	5840	2,22	308
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				X	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30
Bemerkungen:	Multilevel-Mess	stelle				
	Betriebsdruck F	P = 3,2 bar				
	-					
				Probenehmer	1.11	20

Datum:		26.08.2	.08.2015 GW-Messstelle: 61801						301			
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Libracit		°C1		LI	1 f [(C/oml	02.1	ma/l1	Гh	[m\/]	Mon	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
14:19	17,8		5,43	,	4610	,	4,04	,	104	,		0,0
14:25	13,3		5,58		5840		2,22		93			1,0
	Durchflus	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
Redoxpoter	itiai	mV	°C	Ī			n	nV			m	\/
Nullwe	rt	215	13,3	N	/lesswe	rt		93	End	lwert	30	
(Redoxpu		213	10,0		g/AgCl/K			,5			30	,6
(подохра				(7.5	Jir (gOiri							
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	М НСІ	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,58		+	22,8		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,58		+	0,7		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung				-		-		· ·				
i rarang	Т	°C]	n	Н	Lf [µ:	S/cm]	02 [mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße			Tel.: 0341-9845850 Fax: 0341-9845860			
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser			
Datum:		26.08.15	Uhrzeit:	14:44	Proben-Nr.	150772053	
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	//BV	
Bezeichnung der I	Messstelle:		M2-2			61802	
Lage:	RW:	4529	591,0	HW:	5668	3802,6	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe: Filterlage:		[m ü NHN] von:	142,82	Rohr-/Schachtd Bohrdurchmess		11,5 cm 32,5 cm	
[m u Messpunkt] Filterkiesschüttun	a:	bis:	23,2	1,5-faches Filte GW-Spiegel:		m ³	
[m u Messpunkt]	3 -	bis:	23,7	1. Tag (nur bei 2. Tag 3 × Ab-	Datuill	m m	
Teufe der Messste	lle:	Ausbau [m] gelotet [m]	36,02	3. Tag pumpen) vor Probenah.:		m m	
				nach Probenahm	e:	m	
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m] 23,0	ob. Bereich	mittl. Bereich	unt. Bereich	
Art der Probenahn	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. Pt	umpentyp angeben)		x		•		
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben unten	13,0	25,0	4,58	9190	2,51	415	
Wahrnehmungen	<u> </u>	farblos	weiß	gräulich	gelb	braun	
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	X stark		
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch	
	Geruch:	X	aromauscri	laulig	jaucing	CHEMISCH	
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl	
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]		
Konservierung:	s. Bericht						
		Kühlbox X	Kühlschrank	Übergabe	Datum 26.08.2015	Uhrzeit 17:30	
Probentransport/-l Bemerkungen:	agerung: Multilevel-Mess		<u> </u>	Labor:			
Demerkanyen.	Betriebsdruck F						
Institution (Stempel)				Probenehmer (Unterschrift)	Pußlade	ala	

Datum:		26.08.2	6.08.2015 GW-Messstelle: 61802						302			
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Libracit		°C1		LI	1 f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
14:38	16,2		4,63	,	7970	,	4,91	,	178	Ź		0,0
14:44	13,0		4,58		9190		2,51		200			1,0
										<u> </u>		
										<u> </u>		
										<u> </u>		
oben: Redoxpoter	Durchflus ntial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,0	N	/lesswe	rt	2	00	End	lwert	41	15
(Redoxpu	ıffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,58		+	132,0		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	4,58		+	< 0,05		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:	•	2000	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung							<u> </u>	, ,	•			
Traiding	T [°C]	р	Н	Lf [µ	S/cm]	02	[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9845850 Fax: 0341-9845860			
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser			
Datum:		26.08.15	Uhrzeit:	14:58	Proben-Nr.	150772054	
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	//BV	
Bezeichnung der	Messstelle:		M2-3			61803	
Lage:	RW:	4529	9591,0	HW:	5668	3802,6	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe:		[m ü NHN]	142,82	Rohr-/Schachtd	urchmesser:	11,5 cm	
Filterlage:		von:	28,2	Bohrdurchmess		32,5 cm	
[m u Messpunkt] Filterkiesschüttun	ıa.	bis: von:	29,2 27,8	rvolumen:	m³		
[m u Messpunkt]	·a·	bis:	29,7	GW-Spiegel: 1. Tag (nur bei	Datum	m	
				2. Tag 3 × Ab-		m	
Teufe der Messste	elle:	Ausbau [m]	36,02	3. Tag pumpen) vor Probenah.:		m	
		gelotet [m]		nach Probenahm	e:	m m	
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich	
p			29,0				
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х				
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben	13,5	25,0	5,68	6950	1,50	285	
unten							
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X	
(Bitte ankreuzen)	· ·	keine	schwach	mittel	stark	^	
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch	
	Geruch:	X		g	jaaronig		
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl	
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X			
Konservierung:	s. Bericht	12	IZOU L		F :	10 %	
		Kühlbox X	Kühlschrank	Übergabe	Datum 26.08.2015	Uhrzeit 17:30	
Probentransport/-				Labor:	20.30.2010		
Bemerkungen:	Multilevel-Mess Betriebsdruck F						
	2011.00001401(1	.,					
Institution (Stempel)				Probenehmer (Unterschrift)	Publade	ala	

Datum:		26.08.2015 GW-N					GW-Messstelle: 61803			303		
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Libracit	T 1	°C1	-	LI	1 f [(C/om1	02.1	ma/l1	Гh	[m\/]	Mon	0
Uhrzeit	oben	°C] unten	oben p	H unten ¹)	oben	S/cm] unten ¹)	oben	mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
14:52	15,0		5,47	,	6320	,	3,25	,	93	,		0,0
14:58	13,5		5,68		6950		1,50		70			1,0
oben: Redoxpoter	Durchflus	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
Rodoxpotoi	itiui	mV	°C				n	nV			m	V
Nullwe	rt	215	13,5	N	/lesswe	rt .		70	End	lwert	28	
(Redoxpu	ffer)		,	(Ag	g/AgCl/K	(CI)						
hai nU. 0 2.		· ·	_	pH₀						ml 0,1	M HCI	
bei pH>8,2:		K _{S8,2}	=	-			+					
bei pH<8,2:		K _{B8,2}	=	pH₀	5,68		+	24,5		•	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,68		+	0,8		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOł	ł
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
	T [oben	°C] unten	oben	H unten	Lf [µ:	S/cm] unten	O2 [oben	mg(I] unten	Eh oben	[mV] unten	Wsp. [m u ROK]	Q [l/min]
neuer Wert	onen	unten	onen	uncn	ODEII	unicii	ODEII	uniten	open	unten	in a ROR	[withit]
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL -	Grundwasser		
Datum:		26.08.15	Uhrzeit:	15:18	Proben-Nr.	150772058
Objekt:		Messplatz k	Kippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		M2-4]	61804
Lage:	RW:	4529	9591,0	HW:	5668	8802,6
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	142,82	Rohr-/Schachto	lurchmesser:	11,5 cm
Filterlage:		von:	34,2	Bohrdurchmess		32,5 cm
[m u Messpunkt]		bis:	35,2	1,5-faches Filte		m³
Filterkiesschüttur [m u Messpunkt]	ng:	von: bis:	33,5 35,7	GW-Spiegel: 1. Tag (nur bei	Datum	m
		DIS.	33,1	2. Tag (Har ber		m
Teufe der Messste	elle:	Ausbau [m]	36,02	3. Tag pumpen)		m
		gelotet [m]		vor Probenah.:		m
				nach Probenahm	e:	m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Danashahan	35,0			
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)		X			
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,5	25,0	6,12	5560	2,53	223
unten	1]				
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	X mittel	stark	
,	Trübung:	Konie	GGIWAGII	X	Otdik	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	X	Bodensatz:	X		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30
Bemerkungen:	Multilevel-Mess	sstelle				
	Betriebsdruck F	P = 5,0 bar				
				Probenehmer	luke 1	20

Datum:		26.08.2	2015		GW-Messstelle:				618	304		
Probenehm	er:	Paßlac	k/Wacl	nsmann		1						
Bemerkung	en:											
Uhrzeit	TI	°C]	n	,U	l f fug	S/oml	∩ 2 I	[ma/l]	Eh	[m\/]	Mon	0
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]
15:12	16,1		5,90		4820	·	5,63		24			0,0
15:18	13,5		6,12		5560		2,53		8			1,0
oben: Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,5	N	/lesswe	rt		8	End	lwert	22	23
(Redoxpu	ffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	6,12		+	13,0		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH₀	6,12		+	9,1		ml 0,1		
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung												
1		°C]		H L unton		S/cm]		[mg(l]		[mV]	Wsp.	Q [[/min]
neuer Wert	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer vvert												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1.		
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser				
Datum:		26.08.15	Uhrzeit:	15:55	Proben-Nr.	150772059		
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	//BV		
Bezeichnung der I	Messstelle:		M3-1			61811		
Lage:	RW:	4529	9561,1	HW:	5668	3757,0		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	134,42	Rohr-/Schachtd	lurchmesser:	11,5 cm		
Filterlage:		von:	ser:	32,5 cm				
[m u Messpunkt]		bis:	,, ,, ,,					
Filterkiesschüttun [m u Messpunkt]								
	2. Tag 3 × Ab-							
Teufe der Messste	elle:	Ausbau [m]	28,12	3. Tag pumpen)		m		
		gelotet [m]		vor Probenah.:		m		
				nach Probenahm		m		
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
Art der Probenahn	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)	F . F .	Х					
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006		
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	12,8	25,0	4,52	6870	2,28	424		
unten								
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	X stark			
	Trübung:				Х			
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch		
	Ausgasung:	ja nein X	Bodensatz:	ja nein	n. Chlor	n. Min.Öl		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X]			
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30		
Bemerkungen:	Multilevel-Mess							
	Betriebsdruck F	P = 2,4 bar						
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla		

Probenehmer: Paßlack/Wachsmann Pamerkungen: Pamerkungen:	Datum:		26.08.2015 GV				GW-Messstelle:			61811			
Uhrzeit T [°C]	Probenehmer	r:	Paßlac	k/Wacl	nsmann								
Uhrzeit T [°C]	Bemerkunger	n:					•						
15:49									•				
15:49 16,4 5,04 5530 3,50 182 0,0 15:55 12,8 4,52 6870 2,28 209 1,0	Uhrzeit	T [°C]	p	Н	Lf [µ	S/cm]	O2 [[mg/l]	Eh	[mV]	Wsp.	Q
15:55 12,8 4,52 6870 2,28 209 1,0			unten		unten 1)		unten 1)		unten 1)		unten 1)	[m u ROK	
oben: Durchflusszelle unten: Sonde/Fühler unterhalb Pumpe ¹) nur wenn durchgeführt Redoxpotential mV °C mV mV mV mV mV mV mV m													
MV	15:55	12,8		4,52		6870		2,28		209			1,0
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV													
MV	ahaa. Di		!!-		Canala/Eii	h l = =	alla Divissia s		1)		ali mala a a fiil	ht	
mV			szelle	unten:	Sonde/Fu	nier untern	aib Pumpe		.)	nur wenn	aurcngeru	nrt	
Nullwert 215 12,8 Messwert 209 Endwert 424 (Redoxpuffer) (Ag/AgCl/KCl)	- Kouokpotoiiii		mV	°C				n	nV			m	V
(Redoxpuffer) (Ag/AgCl/KCl)	Nullwert				N	/lesswei	rt			End	wert		
			210	12,0					00			72	-7
pei pH>8,2: K _{S8,2} = pH ₀ + ml 0,1 M HCl	(псиохрин	C1 <i>)</i>			(//(J/AgOI/II	Oij						
	bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
pei pH<8,2: $K_{B8,2} = pH_0 4,52 + 39,4 ml 0,1 M NaOH$	bei pH<8,2:		K _{B8,2}	=	pH ₀	4,52		+	39,4		ml 0,1	M NaOl	1
pei pH>4,3: K _{S4,3} = pH ₀ 4,52 + < 0,05 ml 0,1 M HCl	bei pH>4,3:		K _{S4,3}	=	pH₀	4,52		+	< 0,05		ml 0,1	M HCI	
	bei pH<4,3:			=	pH₀			+			ml 0,1	M NaOł	1
Fe(II)-Schnelltest: 2000 mg/l Verdünnung für Fe(II): 1 :	Fe(II)-Schnell	test:	,	2000	mg/l		Verdür	nung f	ür Fe(II)):			
	Prüfung												
T [°C] pH Lf [µS/cm] O2 [mg(l] Eh [mV] Wsp. Q	Fruiding	Τſ	°C1	r	Н	Lf fus	S/cm1	02 [ma(l1	Fh	[mV]	Wsn.	Q
oben unten oben unten oben unten oben unten oben unten mu ROK [l/min]			_				_	_					
	neuer Wert												
Signum Signum	Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL -	Grundwasser		
Datum:		26.08.15	Uhrzeit:	16:06	Proben-Nr.	150772060
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		M3-2]	61812
Lage:	RW:	4529	9561,1	HW:	5668	3757,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	134,42	Rohr-/Schachto	lurchmesser:	11,5 cm
Filterlage:		von:	14,2	Bohrdurchmess		32,5 cm
[m u Messpunkt]		bis:	15,2	1,5-faches Filte		m³
Filterkiesschüttur [m u Messpunkt]	ig:	von: bis:	13,6 15,7	GW-Spiegel: 1. Tag (nur bei	Datum	m
		2.0.	, .	2. Tag 3 × Ab-		m
Teufe der Messste	elle:	Ausbau [m]	28,12	3. Tag pumpen)		m
		gelotet [m]		vor Probenah.:		m
				nach Probenahm	e:	m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahr	mo:	Doppelkolben-	15,0 Membranpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P		pumpe	X	aus Zapinann	Jaugen	ochopien
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006
Sofortanalytik:			4	el. Leitfähigkeit		Redoxpotential
-	GW-Temperatur [°C]	25,0	pH-Wert 5,49	[μS/cm] 5530	Sauerstoff [mg/l]	[mV] 301
oben unten	,-	23,0	3,43	3330	2,47	301
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe	Färbung:			X		
(Bitte ankreuzen)	Trübung:	keine	schwach	mittel	stark X	
	_	ohne	aromatisch	faulig	jauchig	chemisch
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	X	Bodensatz:	X	II. Offici	11. Will1.O1
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30
Bemerkungen:	Multilevel-Mess	stelle				
	Betriebsdruck F	P = 3,0 bar				
				Probenehmer	luly ,	20

Datum:		26.08.2	2015		GW-Messstelle: 6				618	312		
Probenehm	er:	Paßlac	k/Wacł	nsmann		1						
Bemerkung	en:											
Uhrzeit	Τſ	[°C]	n	,U	l f fu	S/cm]	<u> </u>	[ma/l]	Eh	[m\/]	\Mcn	Q
Onizeit	oben	unten	oben	H unten ¹)	oben	unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]
16:00	15,9		5,32		4520		4,97		112			0,0
16:06	12,8		5,49		5530		2,47		86			1,0
oben: Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	•	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	12,8	N	/lesswe	rt	8	36	End	lwert	30)1
(Redoxpu	ffer)			(Aç	g/AgCl/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,49		+	22,2			M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,49		+	5,0		ml 0,1		
bei pH<4,3:		K _{B4,3}	=	pH ₀	•		+	•			M NaOl	ł
Fe(II)-Schne	elltest:	,,	1000	mg/l		Verdür		für Fe(II)):	1:		
Prüfung									-			
raiding		[°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												

Firma Anschrift	Hubert Beyer Strümpellstraß			Tel.: 0341-9 Fax: 0341-9	Seite 1/	
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		26.08.15	Uhrzeit:	16:22	Proben-Nr.	150772061
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	1BV
Bezeichnung der	Messstelle:		M3-3]	61813
Lage:	RW:	4529	9561,1	HW:	5668	3757,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	134,42	Rohr-/Schachto	lurchmesser:	11,5 cm
Filterlage:		von:	20,2	Bohrdurchmess	ser:	32,5 cm
[m u Messpunkt]		bis:	21,2	1,5-faches Filte	rvolumen:	m³
Filterkiesschüttun [m u Messpunkt]	ng:	von: bis:	20,2	GW-Spiegel: 1. Tag (nur bei	Datum	m
[aeeepa]		DIS.	21,1	2. Tag (nur ber		m
Teufe der Messste	elle:	Ausbau [m]	28,12	3. Tag pumpen)		m
		gelotet [m]		vor Probenah.:		m
				nach Probenahm	e:	m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			21,0			
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)		X			
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,3	25,0	6,28	4720	1,60	198
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:			X		
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein	1	ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	26.08.2015	17:30
Bemerkungen:	Multilevel-Mess	sstelle				
	Betriebsdruck I	o = 3,6 bar				
				Probenehmer	lule 1	20

Datum:		26.08.2	6.08.2015 GW-				GW-Messstelle:			618	313	
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:											
Domorkang												
Uhrzeit	T [°C]	ŗ	Н	Lf [µ	S/cm]	02	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK]	[l/min]
16:16	15,2		6,03		4130		3,79		2			0,0
16:22	13,3		6,28		4720		1,60		-17			1,0
oben: Redoxpoter	Durchflus ntial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,3		/lesswe	rt		17	End	lwert	19	
(Redoxpu		213	10,0		g/AgCl/k			17			13	,0
(Кейохри	iiiei)			(7)	J/AgCi/N	CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	6,28		+	17,2		ml 0,1	M NaOł	ł
bei pH>4,3:		K _{S4,3}	=	pH₀	6,28		+	4,5		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	ł
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	iür Fe(II)):	1:		
Prüfung												
	ΤI	°C]	r	Н	Lf [u	S/cm]	02 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1.		
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		26.08.15	Uhrzeit:	16:37	Proben-Nr.	150772055		
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	ИВV		
Bezeichnung der	Messstelle:		M3-4			61814		
Lage:	RW:	4529	9561,1	HW:	5668	3757,0		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	134,42	Rohr-/Schachtd	urchmesser:	11,5 cm		
Filterlage:		von:						
[m u Messpunkt] Filterkiesschüttun		bis:	27,2 1,5-faches Filtervolumen:					
[m u Messpunkt]	·9·	von: bis:	25,7 27,7	GW-Spiegel: 1. Tag (nur bei	Datum	m		
				2. Tag 3 × Ab-		m		
Teufe der Messste	elle:	Ausbau [m]	28,12	3. Tag pumpen)		m		
		gelotet [m]		vor Probenah.: nach Probenahm	e:	m m		
Beprobter Bereich)•	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
20010101 2010101	•		27,0	00. 20.00.	Time. Bereien	u.i.i. 2010.0		
Art der Probenahr	ne:	Doppelkolben- pumpe	Membranpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)		Х					
Abpumpen:	Förderstrom [l/min]:	1,0	Dauer [min]:	6	Volumen [m³]:	0,006		
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	14,6	25,0	5,78	5410	2,21	274		
unten		J						
Wahrnehmungen an der Probe	F " - k	farblos	weiß	gräulich	gelb	braun		
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	X stark			
	Trübung:	ohne	X aromatisch	faulig	jauchig	chemisch		
	Geruch:	X	aromatisch	ladiig	jaucing	CHEITISCH		
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X				
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	-	Х		Labor:	26.08.2015	17:30		
Bemerkungen:	Multilevel-Mess							
	Betriebsdruck F	2 = 4,2 bar						
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla		

Datum:		26.08.2	2015		GW-Messs				essstel	ssstelle: 61814		
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	Τſ	°C]	n	,U	l f fu	S/cm]	∩ 2 l	[ma/l]	Eh	[m\/]	\Mcn	Q
Offizeit	oben	unten	oben	H unten ¹)	oben	unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	[l/min]
16:31	17,7		5,99		4620		4,95		43			0,0
16:37	14,6		5,78		5410		2,21		60			1,0
Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	214	14,6	N	l lesswe	rt	6	60	End	lwert	27	7 4
(Redoxpu	ıffer)			(Aç	g/AgCI/K	(CI)						
hai alli 0 0.		V		n LI			_			I 0 4	MUCI	
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1		
bei pH<8,2:		K _{B8,2}	=	pH₀	5,78		+	21,0		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	5,78		+	1,3		ml 0,1	M HCI	
bei pH<4,3:		$K_{B4,3}$	=	pH_0			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung 1	für Fe(II):	1:		
Prüfung												
3		°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
neuer Wert	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
nouci vveit												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	14:43	Proben-Nr.	150806382
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		RKB1			61591
Lage:	RW:	4531	020,0	HW:	5668	3020,4
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	y:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe:		
Manager white " has] •		F.O
Messpunkthöhe: Filterlage:		[m ü NHN] von:	130,44 3,0	Rohr-/Schachtd Bohrdurchmess		5,0 cm 8,0 cm
[m u Messpunkt]		bis:	4,0	1,5-faches Filte		0,008 m ³
Filterkiesschüttun	ıg:	Datum				
[m u Messpunkt]		bis:	4,0	1. Tag (nur bei	01.09.15	0,02 m
Teufe der Messste	alla.	Aughou [m]	4.04	2. Tag 3 × Ab- 3. Tag pumpen)	02.09.15	2,63 m
reute der Messste	eile:	Ausbau [m] gelotet [m]	4,04 4,07	3. Tag pumpen) vor Probenah.:	03.09.15 04.09.15	2,67 m 2,85 m
		golotot [m]	.,01	nach Probenahm		3,98 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
	-		4,0			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,4	18,0	5,45	3850	3,90	275
unten						
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)		keine	schwach	mittel	stark	
	Trübung:	ohne	aromatisch	faulig	X jauchig	chemisch
	Geruch:	X	aromatisch	ladiig	jaderiig	CHCHIIGGH
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank) (),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Datum	Uhrzeit
Probentransport/-	lagerung:	x		Übergabe Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		-		
	Schöpfprobe					
	-		1			
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calle

Datum:		04.09.2015					GW-Messstelle:				61591		
Probenehme	er:	Paßlac	k/Wacl	nsmann									
Bemerkunge	en:												
Uhrzeit	TI	°C]	n	\U	l f [(2/om1	O2 I	[ma/l]	Eh	[m\/]	Mon	0	
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten ¹)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]	
14:38	14,5		5,41		3680		5,30		64		2,85	0,0	
14:43	13,4		5,45		3850		3,90		60		3,98		
1													
<u> </u>													
oben: Redoxpoten	Durchfluss Itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt		
		mV	°C				mV				m	V	
Nullwert		215	13,4			esswert		60		Endwert		' 5	
(Redoxpu	ffer)			(Ag	g/AgCI/K	(CI)							
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	М НСІ		
		K _{B8,2}	=	pH ₀	5,45		+ 15,8		ml 0,1 N		M NaOH		
bei pH>4,3: K _{S4,3}		K _{S4,3}	=	pH_0	5,45		+ 0,7		ml 0,1 M HCl				
bei pH<4,3: K _{B4,3}		=	pH ₀ +			ml 0,1 M NaOH				1			
Fe(II)-Schnelltest: 500			mg/l	Verdünnung für Fe(II)): 1 :					
Prüfung													
	T [oben	°C] unten	p oben	H unten	Lf [µS	S/cm] unten	O2 [oben	[mg(l] unten	Eh oben	[mV] unten	Wsp. [m u ROK]	Q [l/min]	

Firma Anschrift	Hubert Beyer U Strümpellstraße	Se	eite 1/							
	PRO	BENAHMEP	ROTOKOLL - C	Grundwasser						
Datum:		04.09.15	Uhrzeit:	15:11	Proben-Nr.	150806383				
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LMBV					
Bezeichnung der M	Messstelle:		RKB2			61601				
Lage:	RW:	4530	879,7	HW:	5668	3044,9				
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.						
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:						
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:						
Messpunkthöhe:		[m ü NHN]	130,55	Rohr-/Schachtd	urchmesser:	5,0 c	m			
Filterlage:		von:	3,2	ser:	-,-	m				
[m u Messpunkt]		bis:	4,2	1,5-faches Filte		0,011 n	n³			
Filterkiesschüttun [m u Messpunkt]	g:	von: bis:	2,7 4,2	GW-Spiegel: 1. Tag (nur bei	Datum 01.09.15	0,00 n	n			
		DIO.	7,2	2. Tag 3 × Ab-	02.09.15		n			
Teufe der Messste	lle:	Ausbau [m]	4,15	3. Tag pumpen)	03.09.15		n			
		gelotet [m]	4,10	vor Probenah.:	04.09.15	0,00 n	n			
				nach Probenahm	4,00 n	n				
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich				
		Danie allea llea e	4,0							
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen				
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					X				
Abpumpen:	Förderstrom [I/min]:		Dauer [min]:		Volumen [m³]:					
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotentia	al			
oben	14,0	19,0	4,50	5490	2,33	348				
unten										
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun				
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х				
(=	Trübung:	Keille	Scriwacii	miller	X					
	0	ohne	aromatisch	faulig 0,26	jauchig	chemisch	\neg			
	Geruch:	ja nein	4,5	ja nein	n. Chlor	n. Min.Öl	=			
	Ausgasung:	Х	Bodensatz:							
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststoffflas	sche: X						
Konservierung: s. Bericht										
		Kühlbox	Kühlschrank	l	Datum	Uhrzeit				
Probentransport/-lagerung:		x		Übergabe Labor:	04.09.2015	18:30				
Bemerkungen:		3x Abpumpen, Schöpfprobe								
	Sebakappe unter Wasser									
Institution (Stempel) Probenehmer (Unterschrift)										

Datum:		04.09.2015					GW-Messstelle:				61601		
Probenehm	er:	Paßlac	k/Wacł	nsmann		1							
Bemerkung	en:												
Uhrzeit	т г	°C]	,	,U	l f fug	S/oml	∩ 2 I	[ma/l]	Eh	[m\/]	Mon	0	
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten 1)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]	
15:06	16,2		4,62		5030	·	5,87		140		0,00	0,0	
15:11	14,0		4,50		5490		2,33		133		4,00		
oben: Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	;	1)	nur wenn	durchgefül	hrt		
		mV	°C				n	nV			m	V	
Nullwert		215	14,0	N	/lesswe	esswert		133		Endwert		18	
(Redoxpuffer)				(Ag	g/AgCI/K	(CI)							
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI		
		K _{B8,2}	=	•		+ 25,3		·		M NaOH			
		K _{S4,3}	=	pH ₀			+ 0,26		ml 0,1 M				
bei pH<4,3: K _{B4,3}		=	pH ₀ +			-, -	ml 0,1 M NaOH						
Fe(II)-Schnelltest: 1000 m				Verdünnung für Fe(II)									
Prüfung	Т[°C]	p	Н	Lf [µ	S/cm]	02	[mg(l]	Eh	[mV]	Wsp.	Q	
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]	
neuer Wert													

Firma Anschrift	•	Umwelt Consule 6, 04289 Leip:		Tel.: 0341-9 Fax: 0341-9	Seite 1.		
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser			
Datum:		04.09.15	Uhrzeit:	13:48	Proben-Nr.	150806381	
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	//BV	
Bezeichnung der	Messstelle:		RKB3			61611	
Lage:	RW:	4529	543,9	HW:	5668	3745,8	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle (Bitte ankreuzen)	: :	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:			
Messpunkthöhe:		[m ü NHN]	129,86	Rohr-/Schachtd	urchmesser:	5,0 cm	
Filterlage:		von:	3,2	Bohrdurchmess		8,0 cm	
[m u Messpunkt]		bis:	4,2	1,5-faches Filte	rvolumen:	0,012 m ³	
Filterkiesschüttun [m u Messpunkt]	ng:	von:	2,6 4,2	GW-Spiegel: 1. Tag (nur bei	Datum 01.09.15	0.00 m	
[iii d Mesoparikt]		bis:	4,2	 Tag (nur bei Tag 3 × Ab- 	01.09.15	0,00 m 0,11 m	
Teufe der Messste	elle:	Ausbau [m]	4,16	3. Tag pumpen)	03.09.15	0,06 m	
		gelotet [m]	3,55	vor Probenah.:	04.09.15	0,00 m	
				nach Probenahm	e:	3,47 m	
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich	
		Dannellialhan	3,5				
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. P	umpentyp angeben)					Х	
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:		
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben	16,3	18,0	3,95	6770	403		
unten	١						
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X	
(Bitte ankreuzen)	J	keine	schwach	mittel	stark	1	
	Trübung:	ohne	aromatisch	faulig	X jauchig	chemisch	
	Geruch:			X			
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl	
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X			
Konservierung:	s. Bericht						
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit	
Probentransport/-	lagerung:	Х		Labor:	04.09.2015	18:30	
Bemerkungen:	PN nach 3x Ab	pumpen; Schöp	fprobe				
	Abweichung Te						
	Sebakappe unt	er Wasser					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla	

Datum:		04.09.2	2015				GW-Messstelle: 61611				611	
Probenehm	er:	Paßlac	k/Wacł	nsmann		i						
Bemerkung	en:											
Uhrzeit	Т	°C]		Н	l f fu	S/cm]	021	[ma/l]	⊑h	[mV]	Wsp.	Q
Onizeit	oben	unten	oben	unten ¹)	oben	unten 1)	oben	[mg/l] unten ¹)	oben	_	wsp. [m u ROK]	[l/min]
13:43	17,5		4,03	·	6770	,	5,50		193		0,00	0,0
13:48	16,3		3,95		6770		2,77		189		3,47	
										<u> </u>		
	-											
										<u> </u>		
	-											
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	214	16,3	N	/lesswe	rt	1	89	End	lwert	40)3
(Redoxpu	ıffer)			(Ag	g/AgCl/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	М НСІ	
bei pH<8,2:		K _{B8,2}	=	pH₀	3,95		+	31,8		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	3,95		+	2,42		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung				-		-						
	_	°C]		Н		S/cm]		mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße	845850 845860	Seite 1					
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		04.09.15	Uhrzeit:	13:17	Proben-Nr.	150806380		
Objekt:		Messplatz K	Cippe Witznitz	Auftr.geb.:	LN	/IBV		
Bezeichnung der	Messstelle:		RKB4	_		61621		
Lage:	RW:	4529	798,5	HW:	5668	8613,2		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	130,20	Rohr-/Schachtd	lurchmesser:	5,0 cm		
Filterlage:		von:	3,1	Bohrdurchmess		8,0 cm		
[m u Messpunkt]		bis:	4,1	1,5-faches Filte		0,012 m ³		
Filterkiesschüttur [m u Messpunkt]	ıg:	von: bis:	2,5 4,1	GW-Spiegel: 1. Tag (nur bei	Datum 01.09.15	0.04 m		
[m a mooopamii]		DIS.	4,1	2. Tag (nur ber	02.09.15	0,04 m 0,21 m		
Teufe der Messste	elle:	Ausbau [m]	4,10	3. Tag pumpen)	03.09.15	0,11 m		
		gelotet [m]	4,00	vor Probenah.:	04.09.15	0,05 m		
				nach Probenahm	e:	3,88 m		
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
			3,9					
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)					X		
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:			
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	16,1	18,0	4,34	8750	2,99	372		
unten								
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	X		
(,	Trübung:	Keine	Scriwacii	miller	X			
		ohne	aromatisch	faulig	jauchig	chemisch		
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl		
	Ausgasung:	x	Bodensatz:	X	II. Offici	11. 141111.01		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X				
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	x		Labor:	04.09.2015	18:30		
Bemerkungen:	PN nach 3x Ab	pumpen		-				
	Schöpfprobe							
				Probenehmer	Pull 1	20		

Datum:		04.09.2	2015				GW-Messstelle :				61621	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	ТІ	[°C]	n	Н	I f fu	S/cm]	∩ 2 I	[mg/l]	Fh	[mV]	Wsp.	Q
Offizeit	oben	unten	oben	unten ¹)	oben	unten 1)	oben	unten ¹)	oben	unten ¹)	[m u ROK]	[l/min]
13:12	17,0		4,35		8595		5,71		154		0,05	0,0
13:17	16,1		4,34		8750		2,99		158		3,88	
	-											
	-									<u> </u>		
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	:	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	214	16,1	N	/lesswe	rt	1	58	End	lwert	37	72
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2:		K _{B8,2}	=	pH ₀	4,34		+	71,7		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	4,34		+	< 0,05		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		2000	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
<u> </u>	Τ[°C]		Н		S/cm]		[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	_	Umwelt Consu e 6, 04289 Leip		Tel.: 0341-9 Fax: 0341-9		Seite 1
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	15:51	Proben-Nr.	150806377
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		RKB5]	61631
Lage:	RW:	4528	3419,1	HW:	5669	791,1
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	129,11	Rohr-/Schachto	lurchmesser:	5,0 cm
Filterlage:		von:	3,0	Bohrdurchmess		8,0 cm
[m u Messpunkt]		bis:	4,0	1,5-faches Filte		0,012 m ³
Filterkiesschüttur [m u Messpunkt]	ng:	von: bis:	2,5 4,1	GW-Spiegel: 1. Tag (nur bei	Datum 01.09.15	0,08 m
		DIS.	7,1	2. Tag (Har ber	02.09.15	0,33 m
Teufe der Messste	elle:	Ausbau [m]	4,01	3. Tag pumpen)		0,19 m
		gelotet [m]	3,90	vor Probenah.:	04.09.15	0,11 m
				nach Probenahm	e:	3,79 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Dannellselhen	3,8			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,0	19,0	4,13	2330	2,85	481
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				X	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	X		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	x		Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	ofprobe	-		
	Abweichung Te	eufe > 0,1m				
				Probenehmer	luke 1	20

Datum:		04.09.2	2015	-			GW-Messstelle: 616				31	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
l lla == a :4		° C1	_		I & F (C/o-m-1	00.1	[ma ar /l]	Γh	[ma\ /]	\//on	0
Uhrzeit	oben	°C] unten	oben p	H unten ¹)	oben	S/cm] unten 1)	O2 [oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
15:46	14,1		4,20	,	2240	,	4,70	,	260	,	0,11	0,0
15:51	13,0		4,13		2330		2,85		266		3,79	
	-									ļ		
oben:	Durchflus	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
Redoxpoter						·		,				
		mV	°C				n	nV			m	V
Nullwe	ert	215	13,0	N	/lesswe	rt	2	66	End	lwert	48	31
(Redoxpu	ıffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,13		+	4,2		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	•		+	·		ml 0,1		
bei pH<4,3:		K _{B4,3}	=	pH₀	4,13		+	0,4			M NaOl	1
Fe(II)-Schne	elltest:		20	mg/l	•	Verdür	nung f	ür Fe(II)):	1:		
Prüfung									•			
Turung	ΤI	°C]	р	Н	Lf [µ	S/cm]	02 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel. : 0341-9 Fax : 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	16:17	Proben-Nr.	150806378
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		RKB6	_		61641
Lage:	RW:	4528	3258,0	HW:	5670	077,8
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	129,02	Rohr-/Schachtd	lurchmesser:	5,0 cm
Filterlage:		von:	1,1	Bohrdurchmess	ser:	8,0 cm
[m u Messpunkt]		bis:	2,1	1,5-faches Filte	rvolumen:	0,011 m ³
Filterkiesschüttur [m u Messpunkt]	ng:	von:	0,7	GW-Spiegel:	Datum	0.12 m
[iii a wessparikt]		bis:	2,1	1. Tag (nur bei 2. Tag 3 × Ab-	01.09.15 02.09.15	0,13 m 0,30 m
Teufe der Messste	elle:	Ausbau [m]	2,12	3. Tag pumpen)	03.09.15	0,20 m
		gelotet [m]	2,19	vor Probenah.:	04.09.15	0,18 m
			_	nach Probenahm	e:	2,09 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Dannellselhen	2,1			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	15,6	18,0	6,13	1859	3,52	236
unten	1	J				
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				X	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein	1	ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank] Übersche	Datum	Uhrzeit
Probentransport/-	lagerung:	х		Übergabe Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		-		
	Schöpfprobe					
	-					
				Probenehmer	1.11	20

Datum:		04.09.2015					GW-Messstelle: 61641				641	
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:					ı						
			•••••								• • • • • • • • • • • • • • • • • • • •	
Uhrzeit	Т	[°C]	þ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK	[l/min]
16:12	16,1		5,99		1824		5,27		31		0,18	0,0
16:17	15,6		6,13		1859		3,52		22		2,09	
										-		
	5	<u> </u>		0 1 /5"				4)			<u> </u>	
Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	nier untern	alb Pumpe	•	')	nur wenn	durchgefü	nrt	
		mV	°C				n	nV			m	V
Nullwe	ert	214	15,6	N	/lesswe	rt	2	22	End	lwert	23	36
(Redoxpu	ıffer)			(Ad	g/AgCI/k	(CI)						
(1 1 1 1	,			, ,	<i>y</i> 3 - 1	- /						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH ₀	6,13		+	3,8		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	6,13		+	2,6		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne		5-1,0		mg/l		Verdiir		für Fe(II)	١٠	1:		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20	9/1		l t ci dui	a.ig	. wi i G(II)	<i>,</i> -			
Prüfung	Т	[°C]	r	Н	l f fu	S/cm]	02	[mg(l]	Fh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												-
Signum							Ī					

Firma Anschrift	Hubert Beyer I Strümpellstraß		Tel.: 0341-9 Fax: 0341-9		Seite 1/	
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	09:19	Proben-Nr.	150806289
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		RKB7	_		61651
Lage:	RW:	4528	3204,1	HW:	5671	479,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	129,07	Rohr-/Schachto	lurchmesser:	5,0 cm
Filterlage:		von:	2,5	Bohrdurchmess	ser:	8,0 cm
[m u Messpunkt]		bis:	3,5	1,5-faches Filte	rvolumen:	0,011 m ³
Filterkiesschüttur [m u Messpunkt]	ıg:	von: bis:	2,1 3,5	GW-Spiegel: 1. Tag (nur bei	Datum 01.09.15	0,29 m
[aooopa]		DIS.	3,3	2. Tag (nur ber	02.09.15	0,29 m
Teufe der Messste	elle:	Ausbau [m]	3,47	3. Tag pumpen)	03.09.15	0,35 m
		gelotet [m]	3,32	vor Probenah.:	04.09.15	0,33 m
				nach Probenahm	e:	3,18 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			3,2			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,9	15,0	6,66	2394	1,60	168
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				X	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	ofprobe			
	Abweichung Te	eufe > 0,1m				
				Probenehmer	Pull 1	20

Datum:		04.09.2	2015				GW-Messstelle:				61651	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Libracit		°C1	_	LI	1 f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
09:14	13,2	5117511	6,70	,	2384	,	2,24	,	-42	,	0,33	0,0
09:19	12,9		6,66		2394		1,60		-47		3,18	
	-									<u> </u>		
	D 16			0 1 /5"				1)				
Redoxpoter	Durchflus Intial	szelle	unten:	Sonde/Fül	nler unterh	alb Pumpe		1)	nur wenn	durchgefü	nrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	12,9	N	/lesswei	rt	-4	47	End	lwert	16	88
(Redoxpu	ıffer)		,	(Ag	g/AgCI/K	(CI)						
	,					•						
bei pH>8,2:		K _{S8,2}	=	pH_0			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	6,66		+	1,7		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	6,66		+	5,8		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		5	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung	ТГ	°C]	n	Н	I f fu!	S/cm]	<u>02 l</u>	[mg(l]	Fh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9	Seite 1.	
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	13:07	Proben-Nr.	150732658
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	ИВV
Bezeichnung der I	Messstelle:		RKB8			61661
Lage:	RW:	4530	999,3	HW:	5667	7979,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	130,83	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage:		von:	3,1	Bohrdurchmess		8,0 cm
[m u Messpunkt]		bis:	4,1	1,5-faches Filte		0,009 m ³
Filterkiesschüttun [m u Messpunkt]	ıg:	von: bis:	2,5 4,1	GW-Spiegel: 1. Tag (nur bei	Datum 10.08.15	0,07 m
			-,,-	2. Tag 3 × Ab-	11.08.15	2,62 m
Teufe der Messste	elle:	Ausbau [m]	4,13	3. Tag pumpen)	12.08.15	2,86 m
		gelotet [m]	4,08	vor Probenah.:	13.08.15	2,84 m
				nach Probenahm	e:	3,97 m
Beprobter Bereich):	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahn	no:	Doppelkolben-	4,0	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P		pumpe			Saugen	х
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit	Sauerstoff [mg/l]	Redoxpotential
oben	13,0	26,0	4,16	[μS/cm] 3250	[mV] 539	
unten			•	•	2,50	
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)	· ·	keine	schwach	mittel	stark	1
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch
	Geruch:	Х		J	, ,	
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	fprobe			
	Unterflurpegel					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla

Datum:		13.08.2	2015	-		GW-Messstelle: 61661				61		
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	TI	°C]	n	Н	l f fu	S/oml	021	[ma/l]	Eh	[mV]	Wsp.	Q
Offizeit	oben	unten	oben	unten 1)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	_	wsp. [m u ROK]	[l/min]
13:02	15,4		4,10		2790	·	3,19		323		2,84	0,0
13:07	13,0		4,16		3250		2,50		324		3,97	
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefül	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,0	N	/lesswei	rt	3	24	End	lwert	53	39
(Redoxpu	ıffer)			(Ag	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,16		+	16,1		-	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	, :		+	,		ml 0,1		
bei pH<4,3:				pH ₀	4,16			0,28			M NaOl	
		K _{B4,3}	=		4,10	.,	+				IVI NaOF	1
Fe(II)-Schne	elitest:		500	mg/l		Verdür	nung i	ür Fe(II)):	1:		
Prüfung	_					- '				- \ -		
	T [oben	°C] unten	oben p	H unten	Lf [µ: oben	S/cm] unten	O2 [oben	mg(I] unten	Eh oben	[mV] unten	Wsp. [m u ROK]	Q [l/min]
neuer Wert	35011	anton	35011	GIROII	00011	GIROII	ODON	anton	JUGIT	anton	, a r.o.i.	[,,,,,,,]
Signum												

Firma Anschrift	•	Umwelt Consul e 6, 04289 Leipz			0341-9845850 0341-9845860				
	PRO	BENAHMEPF	ROTOKOLL - (Grundwasser					
Datum:		10.08.15	Uhrzeit:		Proben-Nr.				
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	ИBV			
Bezeichnung der	Messstelle:		RKB9			61671			
Lage:	RW:	4530	715,0	HW:	5668	3080,2			
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.					
Art der Messstelle	•	Einf.pegel:	x	Messstgruppe:					
(Bitte ankreuzen)	·•	Mehrf.pegel:	o m u	Vertikalfilterbr.:					
Messpunkthöhe:		[m ü NHN]	130,29	Rohr-/Schachtd	urchmesser:	5,0 cm			
Filterlage:		von:	3,1	Bohrdurchmess		8,0 cm			
[m u Messpunkt] Filterkiesschüttun	ıg:	bis: von:	4,1 2,5	1,5-faches Filte GW-Spiegel:	rvolumen: Datum	m³			
[m u Messpunkt]	-3-	bis:	4,1	1. Tag (nur bei	10.08.15	0,01 m			
Taufa dan Masasia		A []	4.00	2. Tag 3 × Ab-	11.08.15	- m			
Teufe der Messste	elle:	Ausbau [m] gelotet [m]	4,09 4,08	3. Tag pumpen) vor Probenah.:		m m			
		golotot []	-,	nach Probenahm	e:	m			
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich			
		Dannalkalhan							
Art der Probenahr		Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen			
(Bitte ankreuzen bzw. P	umpentyp angeben)								
Abpumpen:	Förderstrom [I/min]:		Dauer [min]:		Volumen [m³]:				
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]			
oben									
unten		J							
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun			
(Bitte ankreuzen)	_	keine	schwach	mittel	stark				
	Trübung:	ohne	aromatisch	faulig	jauchig	chemisch			
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl			
	Ausgasung:	ju	Bodensatz:	jae	Gine.				
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche:					
Konservierung:	s. Bericht								
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit			
Probentransport/-	lagerung:			Labor:					
Bemerkungen:	keine PN mögli	ich - am 2. Tag t	trocken						
	Sebakappe uni								
	pagagagaga ca ca ca		N. N. N. N. N. N		1	10			
Institution (Stempel)				Probenehmer (Unterschrift)	luß lack	alla			

Datum:		10.08.2	0.08.2015 GW-I							GW-Messstelle: 61671			
Probenehm	er:	Paßlac	k/Wacl	nsmann		n.							
Bemerkung	en:												
1 lla a :4		···		.1.1	1 £ f	C/omi	00.1	'	FL	[ma\ /]	\//on	0	
Uhrzeit	l oben	[°C] unten	oben	H unten ¹)	Lt [µ: oben	S/cm] unten 1)	O2 [oben	mg/l] unten ¹)	⊢ En oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]	
	0.00.	G	000	G	020	u ,	000	ue)	000	unton)		[]	
	-									<u> </u>			
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt		
Redoxpoter	ntial												
		mV	°C	_			n	nV			m	V	
Nullwe					<i>l</i> lesswe				End	lwert			
(Redoxpu	iffer)			(Aç	g/AgCI/k	(CI)							
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI		
bei pH<8,2:		K _{B8,2}	=	pH₀			+			ml 0,1	M NaOl	1	
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI		
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1	
Fe(II)-Schne	elltest:			mg/l		Verdür	nung f	ür Fe(II)):	1:			
Prüfung													
	T	[°C]	þ	Н	Lf [µ	S/cm]	O2 [mg(l]	Eh	[mV]	Wsp.	Q	
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK	[l/min]	
neuer Wert													
Signum													

Firma Anschrift	•										
	PRC	BENAHMEP	ROTOKOLL - (Grundwasser							
Datum:		13.08.15	Uhrzeit:	09:22	Proben-Nr.	150732648					
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	//BV					
Bezeichnung der M	Messstelle:		RKB10			61681					
Lage:	RW:	4529	389,5	HW:	5668	3786,1					
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.							
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:							
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:							
Messpunkthöhe:		[m ü NHN]	129,54	Rohr-/Schachtd	urchmesser:	5,0 cm					
Filterlage:		von:	3,0	Bohrdurchmess	8,0 cm						
[m u Messpunkt]		bis:	4,0	1,5-faches Filte	rvolumen:	0,012 m ³					
Filterkiesschüttun [m u Messpunkt]	g:	von:	2,4	GW-Spiegel:	Datum						
[iii u iviesspurikt]		bis:	4,0	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15	0,00 m					
Teufe der Messste	lle:	Ausbau [m]	4,04	2. Tag 3 × Ab- 3. Tag pumpen)	11.08.15 12.08.15	0,00 m 0,00 m					
reule del Messsie	iie.	gelotet [m]	4,08	vor Probenah.:	13.08.15	0,00 m					
		go.o.o. []	1,00	nach Probenahm		3,71 m					
Beprobter Bereich		Mischwasser	Entrohmotiofo [m]	ob. Bereich	mittl. Bereich	unt. Bereich					
beprobler bereich	•	Miscriwasser	Entnahmetiefe [m]	OD. Bereich	milu. Dereich	unt. Dereich					
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen					
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					х					
Abpumpen:	Förderstrom [I/min]:		Dauer [min]:		Volumen [m³]:						
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [uS/cm]	Redoxpotential [mV]						
oben	13,5	21,0	4,28	4100	3,47	460					
unten											
Wahrnehmungen an der Probe	F#ab.com	farblos	weiß	gräulich X	gelb	braun					
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark						
	Trübung:			х							
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch					
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl					
	Ausgasung:	X	Bodensatz:	X							
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X							
Konservierung:	s. Bericht										
		Kühlbox	Kühlschrank	l m	Datum	Uhrzeit					
Probentransport/-I	agerung:	x		Übergabe Labor:	13.08.2015	18:30					
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	fprobe	<u> </u>							
-	Sebakappe unt										
	10, -2, 10, -2, 10, -2, -0, -2		#								
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	alla					

Datum:		13.08.2	2015				GW-Messstelle: 616				81	
Probenehm	er:	Paßlac	k/Wach	nsmann		1						
Bemerkung	en:											
Uhrzeit	Τſ	°C]	n	L	l f fu	S/oml	∩ 2 l	[ma/l]	Εh	[m\/]	Wen	0
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
09:17	15,6		4,34		3670	·	6,58		250		0,00	0,0
09:22	13,5		4,28		4100		3,47		245		3,71	
oben: Redoxpoter	Durchfluss	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefül	nrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,5	N	/lesswe	rt	2	45	End	lwert	46	80
(Redoxpu	ffer)			(Ag	g/AgCI/K	(CI)						
L - : I L - O - O		1/		m I I							M 1101	
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1		
bei pH<8,2:		K _{B8,2}	=	pH₀	4,28		+	27,9		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<4,3:		$K_{B4,3}$	=	pH₀	4,28		+	< 0,05		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung 1	ür Fe(II)):	1:		
Prüfung												
	_	°C]	-	H I .		S/cm]		[mg(l]		[mV]	Wsp.	Q
neuer Wert	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												

Signum

Firma Anschrift	Hubert Beyer I Strümpellstraße		Tel. : 0341-9 Fax : 0341-9		Seite 1/2	
	PRC	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		01.09.15	Uhrzeit:		Proben-Nr.	
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	IBV
Bezeichnung der	Messstelle:		RKB11			61691
Lage:	RW:	4528	3200,3	HW:	5670	616,2
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe: Filterlage:		[m ü NHN] von:	137,71 5,0	Rohr-/Schachtd Bohrdurchmess	er:	5,0 cm 8,0 cm
[m u Messpunkt] Filterkiesschüttun [m u Messpunkt]	g:	bis: von: bis:	6,0 4,5 6,0	1,5-faches FilteGW-Spiegel:1. Tag (nur bei	rvolumen: Datum	0,006 m ³
Teufe der Messste	elle:	Ausbau [m] gelotet [m]	6,01 5,99	2. Tag 3 × Ab-3. Tag pumpen)vor Probenah.:	01.09.15	m m 5,24 m
		golotet [m]	0,00	nach Probenahm		m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art dan Duahanaha		Doppelkolben- Kreiselpumpe		aug Zanshaha	Course	Cabinfan
Art der Probenahr (Bitte ankreuzen bzw. P		pumpe	Kreiselpunipe	aus Zapfhahn	Saugen	Schöpfen
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit	Sauerstoff [mg/l]	Redoxpotential
oben		Edit-Temp. [O]	pri-vveit	[µS/cm]	Cauciston (mg/l)	[mV]
unten			•			
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun
(Bitte ankreuzen)	Trübung:	keine	schwach	mittel	stark	
	_	ohne	aromatisch	faulig	jauchig	chemisch
	Geruch: Ausgasung:	ja nein	Bodensatz:	ja nein	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche:		
Konservierung:	s. Bericht	1201.0				
Probentransport/-	lagerung:	Kühlbox	Kühlschrank	Übergabe Labor:	Datum	Uhrzeit
Bemerkungen:	keine PN - Wsp	zu gering		Labor.		
	15. 5. 15. 5. 15. 5. 15. 5.	Barton Barton Barton Barton	Barbarbarbarbar			* 17
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Colla

Datum:		01.09.2	9.2015 GW-							GW-Messstelle: 61691			
Probenehm	er:	Paßlac	k/Wacl	nsmann		u.							
Bemerkung	en:												
Uhrzeit	Т	ا°(۲)		Н	I f fu	S/cml	021	[ma/l]	⊑h	[mV]	Wen	Q	
Offizeit	oben	[°C] unten	oben	unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben		Wsp. [m u ROK]	[l/min]	
		<u> </u>											
		<u> </u>								<u> </u>			
		<u> </u>								<u> </u>			
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt		
Redoxpoter	ntial							,		.			
		mV	°C				n	nV			m	V	
Nullwe	ert			N	<i>l</i> lesswe	rt			End	lwert			
(Redoxpu	ıffer)			(Ag	g/AgCI/k	(CI)							
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI		
bei pH<8,2:		K _{B8,2}	=	pH₀			+			ml 0,1	M NaOl	ł	
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI		
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1	
Fe(II)-Schne	elltest:			mg/l		Verdür	nung f	ür Fe(II)):	1:			
Prüfung													
	Т	[°C]		Н		S/cm]	O2 [[mg(l]		[mV]	Wsp.	Q	
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK	[l/min]	
neuer Wert													
Signum													

Firma Anschrift	Hubert Beyer U Strümpellstraße	Tel.: 0341-9 Fax: 0341-9		Seite 1/		
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	16:58	Proben-Nr.	150806384
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	MBV
Bezeichnung der M	Messstelle:		RKB12			61701
Lage:	RW:	4528	3394,2	HW:	5670)247,9
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle	•	Einf.pegel:	х	Messstgruppe:		
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	138,23	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess	ser:	8,0 cm
[m u Messpunkt]		bis:	6,0	1,5-faches Filte	0,011 m ³	
Filterkiesschüttun	g:	von:	4,5	GW-Spiegel:	Datum	
[m u Messpunkt]		bis:	6,0	1. Tag (nur bei	01.09.15	4,19 m
Teufe der Messste	llo:	Ausbau [m]	6,03	2. Tag 3 × Ab- 3. Tag pumpen)	02.09.15 03.09.15	4,25 m 4,23 m
reule der Messsie	ile.	gelotet [m]	5,87	vor Probenah.:	04.09.15	4,23 m
		gelotet [m]	0,0.	nach Probenahm		5,77 m
Damushtan Damaish	_	Minches	Fortunal and the fort			•
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m] 5,8	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. Pu	umpentyp angeben)	pompo				X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [uS/cm]	Redoxpotential [mV]	
oben	14,4	18,0	4,13	2920	4,46	434
unten						
Wahrnehmungen an der Probe		farblos	weiß	gräulich	gelb	braun
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				Х	
	Comuchi	ohne	aromatisch	faulig	jauchig	chemisch
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	X	Bodensatz:	X		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank) Übereste	Datum	Uhrzeit
Probentransport/-I	agerung:	x		Übergabe Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	fprobe	<u> </u>		
-	Abweichung Te					
	10, -2, 10, -2, 10, -2, -0, -2		#			
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	alla

Datum:		04.09.2	2015	. .			GW-Messstelle: 6170				701	
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:					ı						
20			•••••				••••••	• • • • • • • • • • • • • • • • • • • •		••••••		
Uhrzeit	T	[°C]	þ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK	[l/min]
16:53	15,5		4,34		2700		6,87		216		4,22	0,0
16:58	14,4		4,13		2920		4,46		219		5,77	
	Dunalafius	!!-		Canala/F::		alla Divisiona		1)		alalaa.afii	ht	
Redoxpoter	Durchflus	szelle	unten:	Sonde/Fü	nier untern	alb Pumpe	•	.)	nur wenn	durchgefü	nrt	
		mV	°C	Ĭ			n	nV			m	V
Nullwe	ert	215	14,4		lesswe	rt		19	End	lwert	43	
(Redoxpu		210	1-7,-		g/AgCI/k		_	10				7-7
(псиохра	11101)			(יינ	J/AgOI/II	(01)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,13		+	10,5		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	4,13		+	0,77		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		100	mg/l			nnung 1	für Fe(II)):	1:		
Prüfung												
rululig	Т	[°C]	ŗ	Н	Lf [µ	S/cm]	02	[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	m u ROK	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer Umwelt Consult GmbH Tel.: 0341-9845850 Strümpellstraße 6, 04289 Leipzig Fax: 0341-9845860										
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser							
Datum:		04.09.15	Uhrzeit:	10:02	Proben-Nr.	150806290					
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	MBV					
Bezeichnung der M	Messstelle:		RKB13			61711					
Lage:	RW:	4528	3542,3	HW:	567′	1178,6					
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.							
Art der Messstelle	:	Einf.pegel:	x	Messstgruppe:							
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:							
Messpunkthöhe:		[m ü NHN]	134,82	Rohr-/Schachtd	urchmesser:	5,0 cm					
Filterlage: [m u Messpunkt]		von:	5,0	Bohrdurchmess	8,0 cm						
Filterkiesschüttun	a.	bis: von:	6,0 4,5	1,5-faches Filte GW-Spiegel:		0,011 m ³					
[m u Messpunkt]	9.	bis:	6,0	1. Tag (nur bei	Datum 01.09.15	2,82 m					
			- 7-	2. Tag 3 × Ab-	02.09.15	2,90 m					
Teufe der Messste	lle:	Ausbau [m]	6,02	3. Tag pumpen)	03.09.15	2,87 m					
		gelotet [m]	6,08	vor Probenah.:	04.09.15	2,88 m					
				nach Probenahm	e:	5,99 m					
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich unt. Bereic						
		Danashallasa	6,0								
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen					
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					X					
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:						
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [uS/cm]	Redoxpotential						
oben	13,9	15,0	5,75	2155	237						
unten											
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X					
(Bitte ankreuzen)	_	keine	schwach	mittel	stark	1					
	Trübung:	ohne	aromatisch	faulig	X	chemisch					
	Geruch:	X	aromatisch	laulig	jauchig	CHEITISCH					
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl					
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X							
Konservierung:	s. Bericht										
		Kühlbox	Kühlschrank] Übaraska	Datum	Uhrzeit					
Probentransport/-I	agerung:	х		Übergabe Labor:	04.09.2015	18:30					
Bemerkungen:	PN nach 3x Ab	pumpen									
	Schöpfprobe										
Institution (Stempel)				Probenehmer (Unterschrift)	Pußlade	ala					

Datum:		04.09.2	2015	·•		GW-Messstelle: 61711					711	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	T 1	°C]	l	Н	I f fu	S/cm]	021	[mg/l]	Eh	[mV]	Wsp.	Q
Offizeit	oben	unten	oben	unten ¹)	oben	unten 1)	oben	unten ¹)	oben	unten 1)	[m u ROK]	[l/min]
09:57	13,9		5,83		2171		5,51		21		2,88	0,0
10:02	13,9		5,75		2155		3,47		22		5,99	
	-											
	-									<u> </u>		
	-											
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,9	N	/lesswe	rt	2	22	End	lwert	23	37
(Redoxpu	ıffer)			(Ag	g/AgCI/k	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,75		+	3,7		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,75		+	0,7		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		50	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
	_	°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		04.09.15	Uhrzeit:	17:51	Proben-Nr.	150806379
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		RKB14	_		61721
Lage:	RW:	4528	3808,0	HW:	5670	708,5
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	135,73	Rohr-/Schachto	lurchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess	ser:	8,0 cm
[m u Messpunkt]		bis:	6,0	1,5-faches Filte	rvolumen:	0,010 m ³
Filterkiesschüttur [m u Messpunkt]	ng:	von:	4,5	GW-Spiegel:	Datum	4.00
[iii a wesspankt]		bis:	6,0	1. Tag (nur bei 2. Tag 3 × Ab-	01.09.15 02.09.15	1,92 m 4,77 m
Teufe der Messste	elle:	Ausbau [m]	6,03	3. Tag pumpen)		4,86 m
		gelotet [m]	6,12	vor Probenah.:	04.09.15	4,67 m
				nach Probenahm	e:	5,97 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			6,0			
Art der Probenahr	me:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
ober	14,0	16,0	6,24	2700	6,60	229
unter	1	J				
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	kaina	achwach	mittel	otork	Х
(Bitte dilitiouzeri)	Trübung:	keine	schwach	X	stark	
	_	ohne	aromatisch	faulig	jauchig	chemisch
	Geruch:	X noin		io noin	n Chlor	n Min Öl
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	x		Labor:	04.09.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		_		
	Schöpfprobe					
	-					
				Probenehmer	1.11	NA

Datum:		04.09.2	2015			GW-Messstelle: 61721					721	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	ТІ	°C]	n	Н	I f fu	S/cm]	∩ 2 I	[mg/l]	Fh	[mV]	Wsp.	Q
Offizeit	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten ¹)	oben	unten 1)	[m u ROK]	[l/min]
17:46	14,8		5,97		2560		7,60		31		4,67	0,0
17:51	14,0		6,24		2700		6,60		14		5,97	
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe	!	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	215	14,0	N	<i>l</i> lesswe	rt	1	14	End	lwert	22	29
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH ₀	6,24		+	1,5		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH ₀	6,24		+	2,1		ml 0,1	М НСІ	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	ł
Fe(II)-Schne	elltest:		50	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
	_	°C]		Н		S/cm]		[mg(l]		[mV]	Wsp.	Q
neuer Wert	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
Signum			ĺ									

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9				
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		04.09.15	Uhrzeit:	17:22	Proben-Nr.	150806385		
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	1BV		
Bezeichnung der	Messstelle:		RKB17	_		61751		
Lage:	RW:	4528	8810,9	HW:	5670	391,5		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	137,95	Rohr-/Schachtd	lurchmesser:	5,0 cm		
Filterlage:		von:	4,8	Bohrdurchmess	ser:	8,0 cm		
[m u Messpunkt]		bis:	5,8	1,5-faches Filte	rvolumen:	0,013 m ³		
Filterkiesschüttun [m u Messpunkt]	ng:	von:	4,1	GW-Spiegel: 1. Tag (nur bei	Datum	2.20 m		
[iii a wesspankt]		bis:	5,8	1. Tag (nur bei 2. Tag 3 × Ab-	01.09.15 02.09.15	2,29 m 2,35 m		
Teufe der Messste	elle:	Ausbau [m]	5,75	3. Tag pumpen)		2,35 m		
		gelotet [m]	5,69	vor Probenah.:	04.09.15	2,36 m		
				nach Probenahm	e:	5,58 m		
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
			5,6					
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)					X		
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:			
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	14,2	17,0	3,74	3730	4,22	446		
unten								
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х		
	Trübung:				X			
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch		
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl		
	Ausgasung:	Х	Bodensatz:	х				
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]			
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	Х		Labor:	04.09.2015	18:30		
Bemerkungen:	PN nach 3x Ab	pumpen						
	Schöpfprobe							
	-							
				Probenehmer	luke 1	20		

Datum:		04.09.2	04.09.2015						GW-Messstelle:			751
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:					ı						
	••••	•••••	•••••			•••••				••••••		
Uhrzeit	T [[°C]	þ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK	[l/min]
17:17	14,8		3,80		3560		6,56		235		2,36	0,0
17:22	14,2		3,74		3730		4,22		231		5,58	
		-										
	Durahflua	!!-		Canada/Eiil		alla Divisiona		1)		alala a.a.fi'i	ht	
Redoxpoter	Durchflus	szelle	unten:	Sonde/Fül	nier untern	aib Pumpe		.)	nur wenn	durchgefü	nrt	
Trough points		mV	°C	I			n	nV			m	V
Nullwe	rt	215	14,2		/lesswe	rt		31	End	lwert	44	
(Redoxpu		213	17,2		g/AgCl/k			01				Ю
(Кейохри	illel)			(7)	J/AgCI/N	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	3,74		+	21,8		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	3,74		+	2,66		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		500	mg/l		Verdür	nung f	iür Fe(II)):	1:		
Prüfung												
	ΤI	°C]	r	Н	Lf [µ	S/cm]	O2 I	[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße		Tel.: 0341-9 Fax: 0341-9		Seite 1/		
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser			
Datum:		13.08.15	Uhrzeit:	14:25	Proben-Nr.	150732645	
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	/IBV	
Bezeichnung der M	Messstelle:		RKB18			61761	
Lage:	RW:	4530)868,9	HW:	5667	795,0	
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.			
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:			
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:			
Messpunkthöhe:		[m ü NHN]	138,51	Rohr-/Schachtd	urchmesser:	5,0 cm	
Filterlage: [m u Messpunkt]		von:	5,1 6.1	Bohrdurchmess		8,0 cm	
Filterkiesschüttun	g:	bis: von:	6,1 4,6	1,5-faches Filte GW-Spiegel:	rvolumen: Datum	0,007 m ³	
[m u Messpunkt]	J	bis:	6,1	1. Tag (nur bei	10.08.15	5,11 m	
				2. Tag 3 × Ab-	11.08.15	5,12 m	
Teufe der Messste	elle:	Ausbau [m]	6,11	3. Tag pumpen)	12.08.15	5,15 m	
		gelotet [m]	6,11	vor Probenah.: nach Probenahm	13.08.15	5,13 m 6,01 m	
Beprobter Bereich		Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich	
beprobler bereich	•	MISCHWasser	6,0	ob. Bereich	milli. Bereich	unt. Bereich	
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen	
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					Х	
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:		
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]	
oben	13,0	27,0	4,38	1350	3,05	574	
unten							
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X	
(Bitte ankreuzen)	_	keine	schwach	mittel	stark		
	Trübung:	ohne	aromatisch	faulig	X jauchig	chemisch	
	Geruch:	X	diomation	radiig	jadonig	GHGHHGGH	
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl	
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X			
Konservierung:	s. Bericht						
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit	
Probentransport/-I	lagerung:	х		Labor:	13.08.2015	18.30	
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	fprobe				
	sehr geringer Z	ufluss					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	all	

Datum:		13.08.2	2015	-		GW-Messstelle:				61761		
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
Uhrzeit	TI	°C1	n	Н	l f fu	S/oml	021	[ma/l]	⊏h	[m\/]	Wsp.	Q
Offizeit	oben	°C] unten	oben	unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	wsp. [m u ROK]	[l/min]
14:20	15,7		4,31	·	1150	,	4,87		354		5,13	0,0
14:25	13,0		4,38		1350		3,05		359		6,01	
										ļ		
oh on :	Durchflus	270110	untani	Canda/Fiii	alar untarb	alb Dumas		1)	211211022	durabaafii	n ert	
Redoxpoter		szelle	unten:	Sonde/Fül	nier untern	alb Pumpe		.)	nur wenn	durchgefü	nrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	13,0	N	/lesswei	rt	3	59	End	lwert	57	
(Redoxpu	ıffer)		, , ,	(Ac	g/AgCl/K	(CI)						
					, ,	,						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH ₀	4,38		+	2,8		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	4,38		+	< 0,05		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:	,-	100	mg/l		Verdür	nuna f	ür Fe(II)	١٠	1:		
			.00	g, '		. 5. 441		· •(ii)	, ·	• • •		
Prüfung	Т	°C]	'n	Н	ΙfΓιι	S/cm]		[mg(l]	⊏h	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	wsp. [m u ROK]	[l/min]
neuer Wert												
Signum										-		
olgrium				1	Ī		Ī		Ī	I		

Firma Anschrift		Umwelt Consu e 6, 04289 Leip		el.: 0341-9845850				
	PRO)BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		13.08.15	Uhrzeit:	15:17	Proben-Nr.	150732646		
Objekt:		Messplatz K	Cippe Witznitz	Auftr.geb.:	LN	/BV		
Bezeichnung der	Messstelle:		RKB19	4		61771		
Lage:	RW:	4530)835,3	HW:	5667	468,3		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	137,64	Rohr-/Schachtd	lurchmesser:	5,0 cm		
Filterlage:		von:	4,9	Bohrdurchmess	ser:	8,0 cm		
[m u Messpunkt]		bis:	5,9	1,5-faches Filte	rvolumen:	0,011 m ³		
Filterkiesschüttur [m u Messpunkt]	ıg:	von:	4,4	GW-Spiegel:	Datum	0.00		
[III u Messpuliki]		bis:	5,9	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15 11.08.15	3,22 m 3,23 m		
Teufe der Messste	elle:	Ausbau [m]	5,94	3. Tag pumpen)	12.08.15	3,25 m		
		gelotet [m]	6,11	vor Probenah.:	13.08.15	3,25 m		
				nach Probenahm	e:	5,41 m		
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
			6,1					
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)					X		
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:			
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	12,6	27,0	4,33	3850	1,53	478		
unten]						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	X mittel	stark			
,	Trübung:	Keine	X	millor	Otan			
	Camaka	ohne X	aromatisch	faulig	jauchig	chemisch		
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl		
	Ausgasung:	Х	Bodensatz:	X				
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X				
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	Х		Labor:	13.08.2015	18:30		
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	ofprobe					
	Abweichung Te	eufe > 0,1m						
				Probenehmer	Pull 1	DD.		

Datum:		13.08.2	2015				GW-Messstelle :				61771	
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
l lla == a :4		·• C1		.1.1	1.6 (C/o-m-1	00.1	[ma ar /l]	FL	[ma\ /]	Man	0
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	O2 [oben	[mg/l] unten ¹)	EN oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
15:12	14,3	0.11011	4,26	,	2990	,	0,87	,	264	,	3,25	0,0
15:17	12,6		4,33		3850		1,53		263		5,41	
										<u> </u>		
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	215	12,6	N	<i>l</i> lesswe	rt	2	63	End	lwert	47	78
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2:		K _{B8,2}	=	pH ₀	4,33		+	17,7		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	4,33		+	< 0,05		ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nnung f	ür Fe(II)):	1:		
Prüfung												
	Τ[°C]	р	iΗ		S/cm]	O2 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			9845850 9845860				
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser				
Datum:		13.08.15	Uhrzeit:	15:45	Proben-Nr.	150732659		
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	/IBV		
Bezeichnung der	Messstelle:		RKB20	_		61781		
Lage:	RW:	4530	775,8	HW:	5667	7369,7		
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.				
Art der Messstelle (Bitte ankreuzen)	::	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:				
Messpunkthöhe:		[m ü NHN]	138,37	Rohr-/Schachtd	lurchmesser:	5,0 cm		
Filterlage:		von:	4,0	Bohrdurchmess	ser:	8,0 cm		
[m u Messpunkt]		bis:	5,0	1,5-faches Filte	rvolumen:	0,010 m ³		
Filterkiesschüttur [m u Messpunkt]	ıg:	von:	3,5	GW-Spiegel:	Datum	2 60 m		
[III a Wesspankt]		bis:	5,0	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15 11.08.15	3,68 m 3,69 m		
Teufe der Messste	elle:	Ausbau [m]	4,97	3. Tag pumpen)	12.08.15	3,70 m		
		gelotet [m]	5,09	vor Probenah.:	13.08.15	3,70 m		
				nach Probenahm	e:	5,00 m		
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich		
			5,0					
Art der Probenahr	me:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen		
(Bitte ankreuzen bzw. P	umpentyp angeben)	pumpe				Х		
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:			
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]		
oben	12,3	27,0	3,71	2730	2,39	568		
unten								
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun		
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	X		
(=	Trübung:	Kellie	Scriwacii	X	Stark			
		ohne	aromatisch	faulig	jauchig	chemisch		
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl		
	Ausgasung:	X	Bodensatz:	X	II. Offici	II. WIIII.OI		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]			
Konservierung:	s. Bericht							
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit		
Probentransport/-	lagerung:	х		Labor:	13.08.2015	18:30		
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	ofprobe					
	Abweichung Te	eufe > 0,1m						
	-							
				Probenehmer	1.11	NA		

Datum:		13.08.2	2015	-			GW-Messstelle:				617	61781	
Probenehm	er:	Paßlac	k/Wacł	nsmann									
Bemerkung	en:												
1 lla a :4		° C1		.1.1	1.6 (C/o-m-1	00.1	[ma ar /l]	Γh	[ma\ /]	\//on	0	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	O2 [oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]	
15:40	13,5		3,88	,	2340	,	3,70	,	347	,	3,70	0,0	
15:45	12,3		3,71		2730		2,39		352		5,00		
	-												
	-									<u> </u>			
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt		
Redoxpoter	ntial					•		,		J			
		mV	°C				n	nV			m	V	
Nullwe	rt	216	12,3	N	/lesswe	rt	3	52	End	lwert	56	88	
(Redoxpu	ıffer)			(Ag	g/AgCI/K	(CI)							
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI		
bei pH<8,2:		K _{B8,2}	=	pH₀	3,71		+	12,2		ml 0,1	M NaOl	1	
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI		
bei pH<4,3:		K _{B4,3}	=	pH₀	3,71		+	3,1		ml 0,1	M NaOl	1	
Fe(II)-Schne	elltest:	,	250	mg/l	•	Verdür	nnung f	ür Fe(II)):	1:			
Prüfung							<u> </u>	- (
riulung	ΤĮ	°C]	р	Н	Lf [µ	S/cm]	O2 [[mg(l]	Eh	[mV]	Wsp.	Q	
	oben	unten	oben .	unten	oben	unten	oben	unten	oben	unten	m u ROK	[l/min]	
neuer Wert													
Signum													

Firma Anschrift	Hubert Beyer U Strümpellstraße	845850 845860	Seite 1/			
	PRC	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	08:55	Proben-Nr.	150732647
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der N	Messstelle:		1301			70591
Lage:	RW:	4529	213,5	HW:	5668	8856,9
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:		
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	134,95	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage: [m u Messpunkt]		von:	5,9	Bohrdurchmess		5,0 cm
Filterkiesschüttun	q:	bis: von:	6,9 5,9	1,5-faches Filte GW-Spiegel:	Datum	0,003 m ³
[m u Messpunkt]	•	bis:	6,9	1. Tag (nur bei	10.08.15	5,07 m
				2. Tag 3 × Ab-	11.08.15	5,08 m
Teufe der Messste	lle:	Ausbau [m]	6,95	3. Tag pumpen)	12.08.15	5,11 m
		gelotet [m]	7,02	vor Probenah.: nach Probenahm	13.08.15	5,10 m 7,00 m
Daniel Lan Daniel		A4: 1	F. 1. 66.1.			·
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahn	ne:	Doppelkolben- pumpe			Saugen	Schöpfen
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					X
Abpumpen:	Förderstrom [I/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,2	20,0	3,53	4360	2,51	558
unten						
Wahrnehmungen an der Probe	F2-1	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	
	Trübung:		X			
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
		ja nein	1	ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	X	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-I	agerung:	Х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen				
	Schöpfprobe					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	C.Co

Datum:		13.08.2	2015	-		GW-Messstelle:				le:	70591	
Probenehm	er:	Paßlac	k/Wacl	nsmann	ı							
Bemerkung	en:											
Libracit		°C1		LI	1 f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
08:50	14,7	0.11011	3,72	,	4040	,	2,40	,	342	,	5,10	0,0
08:55	13,2		3,53		4360		2,51		343		7,00	
	-		-									
oben:	Durchflus	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefü	hrt	
Redoxpoter	ntial											
		mV	°C				n	nV			m	V
Nullwe		215	13,2		<i>l</i> lesswe		3	43	End	lwert	55	58
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH ₀	3,53		+	29,1		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀	3,53		+	11,4		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung f	für Fe(II)):	1:		
Prüfung												
	_	°C]	•	H		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	•											
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser								
Datum:		13.08.15	Uhrzeit:	09:47	Proben-Nr.	150732649						
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	MBV						
Bezeichnung der M	Messstelle:		1302			70601						
Lage:	RW:	4529	550,3	HW:	5668	3686,5						
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.								
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:								
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:								
Messpunkthöhe:		[m ü NHN]	133,81	Rohr-/Schachtd	urchmesser:	5,0 cm						
Filterlage:		von:	5,0	Bohrdurchmess		5,0 cm						
[m u Messpunkt]		bis:	6,0	1,5-faches Filte		0,003 m ³						
Filterkiesschüttun [m u Messpunkt]	g:	von: bis:	5,0 6,0	GW-Spiegel: 1. Tag (nur bei	Datum 10.08.15	4,01 m						
[aocepa]		DIS.	0,0	2. Tag (Hur ber	11.08.15	4,01 m						
Teufe der Messste	lle:	Ausbau [m]	6,01	3. Tag pumpen)	12.08.15	4,08 m						
		gelotet [m]	5,60	vor Probenah.:	13.08.15	4,08 m						
				nach Probenahm	e:	5,49 m						
Beprobter Bereich	:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich						
·			5,5									
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen						
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					X						
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:							
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]						
oben	13,4	21,0	4,40	4420	ur							
unten												
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X						
(Bitte ankreuzen)	_	keine	schwach	mittel	stark	1						
	Trübung:	ohne	aromatisch	faulig	X jauchig	chemisch						
	Geruch:	х		.comg	jaaamg							
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl						
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X]							
Konservierung:	s. Bericht											
		Kühlbox	Kühlschrank	l	Datum	Uhrzeit						
Probentransport/-I	agerung:	x Übergabe Labor: 13.08.2015 18:30										
Bemerkungen:	PN nach 3x Ab	pumpen, Schöp	fprobe	<u> </u>								
-	Abweichung Te											
Institution (Stempel)				Probenehmer (Unterschrift)	Pußlack	ala						

Datum:		13.08.2	2015	·•		GW-Messstelle:					70601	
Probenehm	er:	Paßlac	k/Wacl	nsmann	ı							
Bemerkung	en:											
Libracit		°C1		.LI	1 f [(C/oml	021	[ma/l]	Гh	[m\/]	Mon	
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
09:42	14,5	0.11011	4,36	,	4170	,	5,41	,	226	,	4,08	0,0
09:47	13,4		4,40		4420		2,70		231		5,49	
										<u> </u>		
	-											
										<u> </u>		
oben: Redoxpoter	Durchflus Itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	•	1)	nur wenn	durchgefül	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	215	13,4	N	/lesswe	rt	2	31	End	lwert	44	16
(Redoxpu	ıffer)			(Ag	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,40		+	17,6		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀	4,40		+	< 0,05		ml 0,1	м нсі	
bei pH<4,3:		K _{B4,3}	=	pH₀			+			ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung 1	ür Fe(II)):	1:		
Prüfung												
	Τ [°C]		Н		S/cm]		[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	10:20	Proben-Nr.	150732650
Objekt:		Messplatz k	Kippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		1303]	70611
Lage:	RW:	4529	9715,0	HW:	5668	3589,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	136,21	Rohr-/Schachto	lurchmesser:	5,0 cm
Filterlage:		von:	7,0	Bohrdurchmess		5,0 cm
[m u Messpunkt]		bis:	8,0	1,5-faches Filte		0,003 m ³
Filterkiesschüttur [m u Messpunkt]	ng:	von: bis:	7,0 8,0	GW-Spiegel: 1. Tag (nur bei	Datum 10.08.15	6,01 m
		DIS.	0,0	2. Tag (Hur ber	11.08.15	6,07 m
Teufe der Messste	elle:	Ausbau [m]	8,01	3. Tag pumpen)		6,10 m
		gelotet [m]	8,01	vor Probenah.:	13.08.15	6,10 m
				nach Probenahm	e:	7,87 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Dannelkelhen	7,9			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,4	22,0	4,05	4890	4,40	472
unten	1	J				
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	X mittel	stark	
	Trübung:			X		
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank] Übarasta	Datum	Uhrzeit
Probentransport/-	lagerung:	x		Übergabe Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		=		
	Schöpfprobe					
		NANANANA NANANANA		Probenehmer	luke 1	20

(Unterschrift)

Institution (Stempel)

Datum:		13.08.2	2015	-				GW-Me	essstel	le:	706	§11
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
l lla == a :4		·• C1		.1.1	1.6 (C/o-m-1	00.1	[no.er/]	Γh	Γ······ /1	\//on	0
Uhrzeit	l [oben	°C] unten	oben	H unten ¹)	Lt [µ: oben	S/cm] unten 1)	O2 [oben	[mg/l] unten ¹)	EN oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
10:15	14,3	0.11011	4,09	,	4350	,	6,53	,	258	,	6,10	0,0
10:20	12,4		4,05		4890		4,40		256		7,87	
	-		-									
	-		-							<u> </u>		
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		¹)	nur wenn	durchgefül	hrt	
Redoxpoter	ntial					•		,		Ü		
		mV	°C				n	nV			m	V
Nullwe	rt	216	12,4	N	/lesswe	rt	2	56	End	lwert	47	72
(Redoxpu	ıffer)			(Ag	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,05		+	18,4		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀	4,05		+	0,8		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung f	ür Fe(II)):	1:		
Prüfung												
	Τ[°C]	•	Н		S/cm]		mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK	[l/min]
neuer Wert												
Signum]								

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRO	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	10:43	Proben-Nr.	150732651
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		1304]	70621
Lage:	RW:	4529	9886,1	HW:	5668	3509,4
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	::	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	133,51	Rohr-/Schachtd	lurchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess	ser:	5,0 cm
[m u Messpunkt]		bis:	6,0	1,5-faches Filte	rvolumen:	0,003 m ³
Filterkiesschüttur [m u Messpunkt]	ıg:	von:	5,0	GW-Spiegel:	Datum	244
[III a Wesspankt]		bis:	6,0	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15 11.08.15	3,14 m 3,20 m
Teufe der Messste	elle:	Ausbau [m]	6,01	3. Tag pumpen)		3,63 m
		gelotet [m]	6,03	vor Probenah.:	13.08.15	3,20 m
				nach Probenahm	e:	5,84 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5,9			
Art der Probenahr	me:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					Х
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	13,2	22,0	3,82	6760	2,52	500
unten		J				
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	achwach	X mittel	otork	
(2.11.0 0.11.11.00.20.11)	Trübung:	Kellie	schwach	X	stark	
		ohne	aromatisch	faulig	jauchig	chemisch
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	x	Bodensatz:	X	II. Offici	11. WIII1.01
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen				
	Schöpfprobe					
		NANANAN NANANAN		Probenehmer	luke 1	20

(Unterschrift)

Institution (Stempel)

Datum:		13.08.2	2015	-				GW-Me	essstel	le:	706	521
Probenehm	er:	Paßlac	k/Wacł	nsmann								
Bemerkung	en:											
l lla == a :4		° C1		.1.1	1.6 (C/o-m-1	00.1	[no.er/]	Γh	Γ······ /1	\//on	0
Uhrzeit	oben	°C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	O2 [oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	Wsp. [m u ROK]	Q [l/min]
10:38	16,1		3,89	,	5930	,	5,71	,	286	,	3,20	0,0
10:43	13,2		3,82		6760		2,52		285		5,84	
oben:	Durchflus	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefül	hrt	
Redoxpoter	ntial											
		mV	°C				n	nV			m	V
Nullwe		215	13,2		/lesswe		2	85	End	lwert	50	00
(Redoxpu	iffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	3,82		+	38,0		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH ₀	3,82		+	2,94		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		2000	mg/l		Verdür	nung f	für Fe(II)):	1:		
Prüfung												
	_	°C]		H I .		S/cm]		[mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße			Tel.: 0341-9 Fax: 0341-9	Seite 1/	
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	11:05	Proben-Nr.	150732652
Objekt:		Messplatz K	(ippe Witznitz	Auftr.geb.:	LN	ИВV
Bezeichnung der I	Messstelle:		1305			70631
Lage:	RW:	4530	0052,4	HW:	5668	3419,0
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle	·	Einf.pegel:	х	Messstgruppe:		
(Bitte ankreuzen)	•	Mehrf.pegel:	o m u	Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	134,20	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess		5,0 cm
[m u Messpunkt] Filterkiesschüttun		bis:	6,0 5.0	rvolumen:	0,003 m ³	
[m u Messpunkt]	ıg.	von: bis:	5,0 6,0	GW-Spiegel: 1. Tag (nur bei	Datum 10.08.15	3,78 m
			-,-	2. Tag 3 × Ab-	11.08.15	3,79 m
Teufe der Messste	elle:	Ausbau [m]	6,00	3. Tag pumpen)	12.08.15	3,83 m
		gelotet [m]	6,02	vor Probenah.:	13.08.15	3,83 m
				nach Probenahm	e:	5,82 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
		Danis allealle an	5,9			
Art der Probenahn	ne:	Doppelkolben- pumpe Kreiselpumpe		aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	11,2	22,0	5,19	4380	2,55	359
unten						
Wahrnehmungen an der Probe	Cänk	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Α
	Trübung:			X		
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
		ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	l	Datum	Uhrzeit
Probentransport/-	lagerung:	x		Übergabe Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen				
-	Schöpfprobe					
Institution (Stempel)				Probenehmer (Unterschrift)	Pußlack	alla

Datum:		13.08.2	2015	. .				GW-Me	essstel	le:	706	31
Probenehm	er:	Paßlac	k/Wacl	nsmann	1							
Bemerkung	en:											
Domorkang	0111											
Uhrzeit	Т	[°C]	ŗ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	m u ROK	[l/min]
11:00	14,6		4,91		3670		5,15		160		3,83	0,0
11:05	11,2		5,19		4380		2,55		142		5,82	
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe	:	1)	nur wenn	durchgefü	hrt	
		mV	°C				n	nV			m	V
Nullwe	ert	217	11,2	1	Messwe	rt		42	End	lwert	35	
(Redoxpu		217	11,2		g/AgCI/k			72				
(Nedoxpt	illel)			יאין	J/AgCI/I	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,19		+	15,8		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,19		+	0,4		ml 0,1		
bei pH<4,3:			=	pH ₀	0,10		+	0, .			M NaOl	<u> </u>
<u> </u>		K _{B4,3}				lv,1''		 /!!			IVI IVACI	•
Fe(II)-Schne	entest:		1000	mg/l		verdur	ınung 1	für Fe(II)):	1:		
Prüfung		1001		.11	1.5.5	C/ave1	00.1	Inn a://1	⊏ 1.	[res\ /]	10/	
	oben	[°C] unten	oben	H unten	Lt [µ: oben	S/cm] unten	oben	[mg(l] unten	EN oben	[mV] unten	Wsp. [m u ROK]	Q [l/min]
neuer Wert	ODCII	differi	ODCII	differi	ODCII	unten	ODCII	diffett	ODCII	dilicii	in a ROR	[""""]
		1								1		
Signum												

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	11:27	Proben-Nr.	150732653
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	/IBV
Bezeichnung der	Messstelle:		1306	_		70641
Lage:	RW:	4530	0219,4	HW:	5668	3333,3
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	::	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	133,96	Rohr-/Schachtd	lurchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess	ser:	5,0 cm
[m u Messpunkt]		bis:	6,0	1,5-faches Filte	rvolumen:	0,003 m ³
Filterkiesschüttun [m u Messpunkt]	ıg:	von:	5,0	GW-Spiegel:	Datum	0.50
[III a Messpankt]		bis:	6,0	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15 11.08.15	3,56 m 3,58 m
Teufe der Messste	elle:	Ausbau [m]	5,96	3. Tag pumpen)		3,61 m
		gelotet [m]	6,00	vor Probenah.:	13.08.15	3,60 m
				nach Probenahm	e:	4,62 m
Beprobter Bereich	n:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5,9			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					Х
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,5	22,0	4,06	6020	1,61	484
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	X
,,	Trübung:	Kellic	Scriwacii	miller	X	
		ohne	aromatisch	faulig	jauchig	chemisch
	Geruch:	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	X	Bodensatz:	X	II. Offici	II. WIIII.OI
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		- -		
	Schöpfprobe					
	÷					
				Probenehmer	Pull 1	10

(Unterschrift)

Institution (Stempel)

Datum:		13.08.2	2015	-				GW-Me	essstel	le:	706	641
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:											
Uhrzeit	т г	°C1	r	,U	l f fu	S/oml	021	[ma/l]	Eh	[m\/]	Wsp.	Q
Offizeit	oben	C] unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten ¹)	wsp. [m u ROK]	[l/min]
11:22	15,0		4,11	·	5130	,	5,14		270		3,60	0,0
11:27	12,5		4,06		6020		1,61		269	<u> </u>	4,62	
oben: Redoxpoter	Durchflus itial	szelle	unten:	Sonde/Fül	hler unterh	alb Pumpe		1)	nur wenn	durchgefül	hrt	
•		mV	°C				n	nV			m	V
Nullwe	rt	215	12,5	N	/lesswe	rt	2	69	End	lwert	48	34
(Redoxpu	ıffer)			(Aç	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,06		+	31,1		ml 0,1	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	4,06		+	3,3		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:	,	2000	mg/l	•	Verdür	nung f	ür Fe(II)):	1:		
				<u> </u>			- · · · · · · · · · · · · · · · · · · ·	- 1				
Prüfung	ΤĮ	[°C]	p	Н	Lf [µ	S/cm]	O2 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben .	unten	oben	unten	oben	unten	oben	unten	m u ROK	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße			Tel.: 0341-9 Fax: 0341-9	Seite 1	
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	11:57	Proben-Nr.	150732654
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	ИВV
Bezeichnung der	Messstelle:		1307			70651
Lage:	RW:	4530	379,6	HW:	5668	3239,3
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle	: :	Einf.pegel:	х	Messstgruppe:		
,		Mehrf.pegel:	o m u	Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	135,04	Rohr-/Schachto		5,0 cm
Filterlage: [m u Messpunkt]		von: bis:	6,0 7,0	Bohrdurchmess 1,5-faches Filte		5,0 cm 0,003 m ³
Filterkiesschüttun	ng:	von:	6,0	GW-Spiegel:	Datum	0,000
[m u Messpunkt]		bis:	7,0	1. Tag (nur bei	10.08.15	4,32 m
				2. Tag 3 × Ab-	11.08.15	4,94 m
Teufe der Messste	elle:	Ausbau [m]	7,04	3. Tag pumpen)	12.08.15	4,87 m
		gelotet [m]	7,00	vor Probenah.: nach Probenahm	13.08.15	4,86 m 6,85 m
D						·
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahr	me:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)	ратро				х
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,6	22,0	5,72	3360	2,78	330
unten	1					
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)		keine	schwach	mittel	stark	1
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch
	Geruch:	X	diomaticon	lading	jadonig	Orienticon
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell damkel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	1 n	Datum	Uhrzeit
Probentransport/-	lagerung:	х		Übergabe Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen		<u> </u>		
-	Schöpfprobe					
	-					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	Calla

Datum:		13.08.2	2015					GW-Me	essstel	le:	706	S51
Probenehm	er:	Paßlac	k/Wacł	nsmann		1						
Bemerkung	en:											
Uhrzeit	Τſ	[°C]	n	,U	l f fu	S/oml	∩ 2 I	[ma/l]	Eh	[m\/]	Wen	0
Onizeit	oben	unten	oben	H unten ¹)	oben	S/cm] unten 1)	oben	[mg/l] unten ¹)	oben	[mV] unten 1)	Wsp. [m u ROK]	Q [l/min]
11:52	15,2		5,30		3010	·	1,95		139		4,86	0,0
11:57	12,6		5,72		3360		2,78		115		6,85	
oben: Redoxpoter	Durchflus:	szelle	unten:	Sonde/Fü	hler unterh	alb Pumpe		1)	nur wenn	durchgefül	hrt	
		mV	°C				n	nV			m	V
Nullwe	rt	215	12,6	N	/lesswe	rt	1	15	End	lwert	33	30
(Redoxpu	ffer)			(Ag	g/AgCI/K	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	5,72		+	18,1		•	M NaOl	1
bei pH>4,3:		K _{S4,3}	=	pH ₀	5,72		+	1,8		ml 0,1		
bei pH<4,3:		K _{B4,3}	=	pH ₀	,		+	•			M NaOl	1
Fe(II)-Schne	elltest:	2 .,0	500	mg/l		Verdür		ür Fe(II)):	1:		
Prüfung								,	•			
Turung		[°C]		Н		S/cm]		mg(l]		[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												

Signum

Firma Anschrift	Hubert Beyer I Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRC	BENAHMEPI	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	13:56	Proben-Nr.	150732656
Objekt:		Messplatz k	(ippe Witznitz	Auftr.geb.:	LN	ИВV
Bezeichnung der	Messstelle:		1308			70661
Lage:	RW:	4530	0546,7	HW:	5668	3159,5
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)):	Einf.pegel: Mehrf.pegel:	x o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	133,83	Rohr-/Schachtd	lurchmesser:	5,0 cm
Filterlage:		von:	5,0	Bohrdurchmess	ser:	5,0 cm
[m u Messpunkt]		bis:	6,0	1,5-faches Filte	rvolumen:	0,003 m ³
Filterkiesschüttur [m u Messpunkt]	ng:	von:	5,0	GW-Spiegel:	Datum	2.45 m
[iii a wessparikt]		bis:	6,0	1. Tag (nur bei 2. Tag 3 × Ab-	10.08.15 11.08.15	3,45 m 3,46 m
Teufe der Messste	elle:	Ausbau [m]	6,03	3. Tag pumpen)		3,49 m
		gelotet [m]	6,02	vor Probenah.:	13.08.15	3,47 m
			-	nach Probenahm	e:	4,08 m
Beprobter Bereich	1:	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5,9			
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [μS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,7	26,0	4,01	8160	2,67	473
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	stark	Х
	Trübung:				X	
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Gerucii.	ja nein		ja nein	n. Chlor	n. Min.Öl
	Ausgasung:	Х	Bodensatz:	Х		
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell demkel	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	13.08.2015	18.30
Bemerkungen:	PN nach 3x Ab	pumpen				
	Schöpfprobe					
	-					
				Probenehmer	1.11	20

(Unterschrift)

Institution (Stempel)

Probenehmer: Paßlack/Wachsmann	Datum:	13.08.2	2015					GW-Me	essstel	le:	706	61
Uhrzeit T [°C] pH Lf [μS/cm] O2 [mg/l] Eh [mV] Wsp. Q oben unten oben unten ¹) m u ROK, [l/min] 13:51 17,2 4,04 6540 5,45 261 3,47 0,0	Probenehmer:	Paßlac	k/Wacl	hsmann	1							
Uhrzeit T [°C] pH Lf [μS/cm] O2 [mg/l] Eh [mV] Wsp. Q oben unten oben unten ¹) m u ROK, [l/min] 13:51 17,2 4,04 6540 5,45 261 3,47 0,0	Bemerkungen:											
oben unten oben unten ¹) m u ROK [l/min] 13:51 17,2 4,04 6540 5,45 261 3,47 0,0	20	•••••				•••••					• • • • • • • • • • • • • • • • • • • •	
13:51 17,2 4,04 6540 5,45 261 3,47 0,0	Uhrzeit T	[<u>°</u> C]	ŗ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
				unten 1)		unten 1)		unten 1)		unten 1)		
13:50 12,7 4,01 8160 2,67 258 4,08		_	<u> </u>									0,0
	13:56 12,7		4,01		8160		2,67		258		4,08	
			1									
			1									
			.							-		
			1									
			1									
			1									
about Durability and the control of	ahan Durahfi	· · · · · · · · · · · · · · · · · · ·		Condo/F:	-	alla Divisiona		1)		alala a.a.f.	la mit	
oben: Durchflusszelle unten: Sonde/Fühler unterhalb Pumpe ¹) nur wenn durchgeführt Redoxpotential	Redoxpotential	isszelle	unten:	Sonde/Fu	nier untern	alb Pumpe	•	')	nur wenn	aurcngetu	nrt	
mV °C mV mV		mV	°C				r	nV			m	V
Nullwert 215 12,7 Messwert 258 Endwert 473	Nullwert			N	Messwe	rt			End	lwert		
(Redoxpuffer) (Ag/AgCl/KCl)		210	12,7				_	00			T .	Ü
(Ag/Agol/Noi)	(Redoxpuller)			ייי	J/AgOI/I	(01)						
bei pH>8,2: $K_{S8,2} = pH_0 + ml 0,1 M HCl$	bei pH>8,2:	K _{S8,2}	=	pH ₀			+			ml 0,1	м нсі	
bei pH<8,2: K _{B8,2} = pH ₀ 4,01 + 57,2 ml 0,1 M NaOH	bei pH<8,2:	K _{B8,2}	=	pH₀	4,01		+	57,2		ml 0,1	M NaOl	1
	bei pH>4,3:		=	pH₀			+			ml 0,1	M HCI	
·	bei pH<4,3:		=	pΗ ₀	4,01		+	2,55				1
Fe(II)-Schnelltest: 2000 mg/l Verdünnung für Fe(II): 1 :			2000		•	Verdür	nuna 1):			
		=		···ə''		. 5. 441	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	, -			
Prüfung Τ [°C] pH Lf [μS/cm] O2 [mg(l] Eh [mV] Wsp. Q	Prüfung T	· [°C]	l r	Н	Lf fu	S/cm1	02	[ma(l]	Fh	[mV]	Wsn.	Q
oben unten oben unten oben unten oben unten oben unten oben unten [m u ROK] [l/min]		-, -								-		
neuer Wert	neuer Wert											
Signum	Signum											

Firma Anschrift	-	Umwelt Consu e 6, 04289 Leip		Tel.: 0341-9 Fax: 0341-9		Seite 1
	PRO	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	13:31	Proben-Nr.	150732655
Objekt:		Messplatz K	Kippe Witznitz	Auftr.geb.:	LN	ИBV
Bezeichnung der	Messstelle:		1309			70671
Lage:	RW:	4530	959,5	HW:	5667	7965,5
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle (Bitte ankreuzen)	:	Einf.pegel: Mehrf.pegel:	X o m u	Messstgruppe: Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	135,65	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage:		von:	6,1	Bohrdurchmess		5,0 cm
[m u Messpunkt] Filterkiesschüttun		bis: von:	7,1 6,1	1,5-faches Filte GW-Spiegel:		0,003 m ³
[m u Messpunkt]	y.	bis:	7,1	1. Tag (nur bei	Datum 10.08.15	4,66 m
				2. Tag 3 × Ab-	11.08.15	4,67 m
Teufe der Messste	elle:	Ausbau [m]	7,05	3. Tag pumpen)	12.08.15	4,68 m
		gelotet [m]	7,03	vor Probenah.: nach Probenahm	13.08.15	4,67 m 6,87 m
Beprobter Bereich	<u> </u>	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Deprobler Dereici		Wisciwassei	6,9	OD. Defeich	mita. Dereich	unt. Dereich
Art der Probenahr	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. P	umpentyp angeben)					Х
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	12,3	26,0	3,58	3080	3,57	548
unten						
Wahrnehmungen		farblos	weiß	gräulich	gelb	braun
an der Probe (Bitte ankreuzen)	Färbung:	keine	schwach	mittel	X stark	Х
	Trübung:			X		
	Geruch:	ohne X	aromatisch	faulig	jauchig	chemisch
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell	Kunststofffla	sche: X]	
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-	lagerung:	Х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen				
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	C.Co

Datum:		13.08.2	2015					GW-Me	essstel	le:	706	7 1
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:					,						
	••••					•••••		•		••••••		
Uhrzeit	T [°C]	þ	Н	Lf [µ	S/cm]	O2 [[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK	[l/min]
13:26	16,3		3,77		2500		5,09		330		4,67	0,0
13:31	12,3		3,58		3080		3,57		332		6,87	
ohon:	Durchflus	czollo	unton:	Sonde/Fü	hlor untorb	alb Dumpo		1\	nur wonn	durchgefü	hrt	
Redoxpoter		SZEIIE	unten.	30Hue/Fu	iller untern	aib Fullipe		,	nui wenii	durchigeru	11111	
Trough Poto:		mV	°C	I			n	nV			m	V
Nullwe	rt	216	12,3	N	lesswe	rt		32	End	lwert	54	
(Redoxpu		210	12,0		g/AgCI/k			02				
(псиохри	iici)			(//5	J/AgOI/II	(OI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	3,58		+	21,9		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	3,58		+	4		ml 0,1	M NaOl	ł
Fe(II)-Schne	elltest:			mg/l	,	Verdür		ür Fe(II)		1:		
				···ɔ/·		7 0. 001			, -	• •		
Prüfung	TI	°C]	n	Н	Lf fu:	S/cm]	02 [[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Firma Anschrift	Hubert Beyer U Strümpellstraße			Tel.: 0341-9 Fax: 0341-9		Seite 1/
	PRC	BENAHMEP	ROTOKOLL - (Grundwasser		
Datum:		13.08.15	Uhrzeit:	12:43	Proben-Nr.	150732657
Objekt:		Messplatz K	ippe Witznitz	Auftr.geb.:	LN	ИВV
Bezeichnung der N	Messstelle:		1310			70681
Lage:	RW:	4531	095,0	HW:	5667	7962,4
Kartengrundlage:	TK 25' Nr.			TK 10' Nr.		
Art der Messstelle	:	Einf.pegel:	х	Messstgruppe:		
(Bitte ankreuzen)		Mehrf.pegel:	o m u	Vertikalfilterbr.:		
Messpunkthöhe:		[m ü NHN]	135,75	Rohr-/Schachtd	urchmesser:	5,0 cm
Filterlage: [m u Messpunkt]		von:	5,9	Bohrdurchmess		5,0 cm
Filterkiesschüttun	q:	bis: von:	6,9 5,9	1,5-faches Filte GW-Spiegel:	Datum	0,003 m ³
[m u Messpunkt]	J	bis:	6,9	1. Tag (nur bei	10.08.15	5,20 m
				2. Tag 3 × Ab-	11.08.15	5,21 m
Teufe der Messste	elle:	Ausbau [m]	6,95	3. Tag pumpen)	12.08.15	5,23 m
		gelotet [m]	7,02	vor Probenah.: nach Probenahm	13.08.15	5,23 m 6,88 m
Daniel tan Daniel		A4: 1	F. 1. 66.1.			
Beprobter Bereich	i :	Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
Art der Probenahn	ne:	Doppelkolben- pumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
(Bitte ankreuzen bzw. Pu	umpentyp angeben)					X
Abpumpen:	Förderstrom [l/min]:		Dauer [min]:		Volumen [m³]:	
Sofortanalytik:	GW-Temperatur [°C]	Luft-Temp. [°C]	pH-Wert	el. Leitfähigkeit [µS/cm]	Sauerstoff [mg/l]	Redoxpotential [mV]
oben	11,7	26,0	4,00	4510	3,52	526
unten						
Wahrnehmungen an der Probe	Färbung:	farblos	weiß	gräulich	gelb	braun X
(Bitte ankreuzen)	i arbung.	keine	schwach	mittel	stark	
	Trübung:	ohne	aromatisch	X faulig	jauchig	chemisch
	Geruch:	X	diomatisch	ladiig	jaucing	CHCHISCH
	Ausgasung:	ja nein X	Bodensatz:	ja nein X	n. Chlor	n. Min.Öl
Probengefäß: (Bitte ankreuzen)	Glasflasche:	hell dankel	Kunststofffla	sche: X		
Konservierung:	s. Bericht					
		Kühlbox	Kühlschrank	Übergabe	Datum	Uhrzeit
Probentransport/-I	lagerung:	Х		Labor:	13.08.2015	18:30
Bemerkungen:	PN nach 3x Ab	pumpen				
	Schöpfprobe					
Institution (Stempel)				Probenehmer (Unterschrift)	Publack	C.Co

Datum:		13.08.2	2015	·-				GW-Me	essstel	le:	706	81
Probenehm	er:	Paßlac	k/Wacl	nsmann								
Bemerkung	en:					ı						
20						•••••		• • • • • • • • • • • • • • • • • • • •		••••••		
Uhrzeit	T	[°C]	þ	Н	Lf [µ	S/cm]	O2	[mg/l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten 1)	oben	unten 1)	oben	unten 1)	oben	unten 1)	[m u ROK	[l/min]
12:38	16,2		4,05		3650		5,51		308		5,23	0,0
12:43	11,7		4,00		4510		3,52		310		6,88	
	-											
	-	<u> </u>										
	Dunalaflua	!!-		Canala/F::		alla Divisiona		1)		alala a.a.fii	ht	
Redoxpoter	Durchflus	szelle	unten:	Sonde/Fü	nier untern	aib Pumpe		.)	nur wenn	durchgefü	nrt	
		mV	°C				n	nV			m	V
Nullwe	rt	216	11,7	_	/lesswe	rt		10	End	lwert	52	
(Redoxpu		210	11,7		g/AgCl/k			10			52	.0
(Nedoxpu	illel)			(7)	J/AgCI/N	(CI)						
bei pH>8,2:		K _{S8,2}	=	pH ₀			+			ml 0,1	M HCI	
bei pH<8,2:		K _{B8,2}	=	pH₀	4,00		+	21,9		ml 0,1	M NaOl	ł
bei pH>4,3:		K _{S4,3}	=	pH₀			+			ml 0,1	M HCI	
bei pH<4,3:		K _{B4,3}	=	pH₀	4,00		+	3,45		ml 0,1	M NaOl	1
Fe(II)-Schne	elltest:		1000	mg/l		Verdür	nung 1	für Fe(II)):	1:		
Prüfung								, ,				
runung	TI	°C]	r	Н	Lf [u	S/cm]	02	[mg(l]	Eh	[mV]	Wsp.	Q
	oben	unten	oben	unten	oben	unten	oben	unten	oben	unten	[m u ROK]	[l/min]
neuer Wert												
Signum												

Montanhydrologisches Monitoring Westsachsen/Thüringen Messplatz Kippe Witznitz Beprobung August/September 2015 Projekt-Nr. 15-002-40

Übersicht Probenahmeparameter

Mark-	Mess-	Datum	Ruhe-	Entnahme-	Förder-	Abpump-	Absenk-	PN-Art	Temp.	Temp.	pH-Wert	elektr.	Sauersto	Redox-	KB 4,3	KS 4.3	KB 8.2	KS 8,2
scheider-	stellen-	der PN	wasser-	tiefe	leistung	dauer	ung		unten	oben	p	Leitf.	ff	spannun	(bei	(bei	(bei	(bei
Nr.	name		stand		Ū									g	pH<4,3)	pH>4,3)	pH<8,2)	pH>8,2)
			[muROK]	[muROK]	[l/min]	[min]	[m]		[°C]	[°C]	-	[µS/cm]	[mg/l]	[mV]	[mmol/l]	[mmol/l]	[mmol/l]	[mmol/l]
Mehrfachm	essstelle	en																
61791	M1-1	26.08.15	-	21,0	1,0	6	-	Pumpprobe	-	13,5	5,23	7750	1,6	318	< 0,05	0,2	34,5	< 0,05
61792	M1-2	26.08.15	-	27,0	1,0	6	-	Pumpprobe	-	15,6	5,61	6390	2,2	325	< 0,05	0,5	25,1	< 0,05
61793	M1-3	26.08.15	-	33,0	1,0	6	-	Pumpprobe	-	14,9	5,86	5540	1,3	251	< 0,05	1,3	15,6	< 0,05
61794	M1-4	26.08.15	-	39,0	1,0	6	-	Pumpprobe	-	14,4	5,54	7030	1,8	288	< 0,05	0,5	32,1	< 0,05
61795	M1-5	26.08.15	-	54,0	1,0	6	-	Pumpprobe	-	20,5	5,29	4280	2,6	325	< 0,05	6,5	15,9	< 0,05
61801	M2-1	26.08.15	-	17,0	1,0	6	-	Pumpprobe	-	13,3	5,58	5840	2,2	308	< 0,05	0,7	22,8	< 0,05
61802	M2-2	26.08.15	-	23,0	1,0	6	-	Pumpprobe	-	13,0	4,58	9190	2,5	415	< 0,05	< 0,05	132,0	< 0,05
61803	M2-3	26.08.15	-	29,0	1,0	6	-	Pumpprobe	-	13,5	5,68	6950	1,5	285	< 0,05	0,8	24,5	< 0,05
61804	M2-4	26.08.15	-	35,0	1,0	6	-	Pumpprobe	-	13,5	6,12	5560	2,5	223	< 0,05	9,1	13,0	< 0,05
61811	M3-1	26.08.15	-	9,0	1,0	6	-	Pumpprobe	-	12,8	4,52	6870	2,3	424	< 0,05	< 0,05	39,4	< 0,05
61812 61813	M3-2 M3-3	26.08.15 26.08.15	-	15,0 21.0	1,0 1.0	6 6	-	Pumpprobe	-	12,8 13.3	5,49 6.28	5530 4720	2,5 1,6	301 198	< 0,05 < 0.05	5,0 4,5	22,2 17,2	< 0,05 < 0,05
61814	M3-4	26.08.15	-	27,0	1,0	6	-	Pumpprobe Pumpprobe	-	14,6	5,78	5410	2,2	274	< 0.05	1,3	21.0	< 0.05
_		20.00.13	-	21,0	1,0	U	-	Fullippiobe	-	14,0	5,76	3410	۷,۷	2/4	< 0,03	1,3	21,0	< 0,05
Rammpege 61591	RKB1	04.09.15	0.02	4,0		_	3,96	PN nach 3x Abpumpen	_	13,4	5,45	3850	3,9	275	< 0.05	0.7	15,8	< 0,05
61601	RKB2	04.09.15	0,02	4,0		-	4,00	PN nach 3x Abpumpen		14,0	4,50	5490	2,3	348	< 0.05	< 0,05	25,3	< 0.05
61611	RKB3	04.09.15	0.00	3.5		_	3.47	PN nach 3x Abpumpen		16.3	3.95	6770	2.8	403	2.4	< 0.05	31.8	< 0.05
61621	RKB4	04.09.15	0.04	3,9	_	_	3.84	PN nach 3x Abpumpen	_	16,1	4,34	8750	3,0	372	< 0.05	< 0,05	71.7	< 0.05
61631	RKB5	04.09.15	0.08	3,8	_	_	3.71	PN nach 3x Abpumpen	-	13,0	4,13	2330	2,9	481	0.4	< 0.05	4.2	< 0.05
61641	RKB6	04.09.15	0,13	2,1	-	-	1,96	PN nach 3x Abpumpen	-	15,6	6,13	1859	3,5	236	< 0.05	2,6	3,8	< 0.05
61651	RKB7	04.09.15	0,29	3,2	-	-	2,89	PN nach 3x Abpumpen	-	12,9	6,66	2394	1,6	168	< 0,05	5,8	1,7	< 0,05
61661	RKB8	13.08.15	0,07	4,0	-	-	3,90	PN nach 3x Abpumpen	-	13,0	4,16	3250	2,5	539	0,3	< 0,05	16,1	< 0,05
61671	RKB9	10.08.15	0,01	4,0	-	-	-	keine PN - trocken am 2. Tag	-	-	-	ı	-	-	-	-	-	-
61681	RKB10	13.08.15	0,00	4,0	-	-	3,71	PN nach 3x Abpumpen	-	13,5	4,28	4100	3,5	460	< 0,05	< 0,05	27,9	< 0,05
61691	RKB11	01.09.15	5,24	5,9	-	-	-	keine PN - Wsp zu gering	-	-	-	-	-	-	-	-	-	-
61701	RKB12	04.09.15	4,19	5,8	-	-	1,58	PN nach 3x Abpumpen	-	14,4	4,13	2920	4,5	434	0,8	< 0,05	10,5	< 0,05
61711	RKB13	04.09.15	2,82	6,0	-	-	3,17	PN nach 3x Abpumpen	-	13,9	5,75	2155	3,5	237	< 0,05	0,7	3,7	< 0,05
61721	RKB14	04.09.15	1,92	6,0	-	-	4,05	PN nach 3x Abpumpen	-	14,0	6,24	2700	6,6	229	< 0,05	2,1	1,5	< 0,05
61751	RKB17 RKB18	04.09.15 13.08.15	2,29 5,11	5,6 6.0			3,29 0,90	PN nach 3x Abpumpen PN nach 3x Abpumpen	-	14,2 13,0	3,74 4,38	3730 1350	4,2 3,1	446 574	2,7 < 0.05	< 0,05 < 0,05	21,8 2.8	< 0,05 < 0.05
61761 61771	RKB18	13.08.15	3,22	6,1	-	-	2,19	PN nach 3x Abpumpen PN nach 3x Abpumpen	-	12,6	4,38	3850	1,5	478	< 0.05	< 0,05	17,7	< 0.05
61781	RKB20	13.08.15	3,22	5.0		-	1,32	PN nach 3x Abpumpen	-	12,0	3.71	2730	2,4	568	3,1	< 0.05	12.2	< 0.05
70591	1301	13.08.15	5,07	7,0		-	1,93	PN nach 3x Abpumpen	-	13,2	3,53	4360	2,4	558	11,4	< 0.05	29,1	< 0.05
70601	1301	13.08.15	4,01	5,5		-	1,48	PN nach 3x Abpumpen		13,4	4,40	4420	2,3	446	< 0.05	< 0,05	17,6	< 0.05
70611	1303	13.08.15	6.01	7,9		_	1,86	PN nach 3x Abpumpen	-	12,4	4,05	4890	4,4	472	0,8	< 0,05	18,4	< 0.05
70621	1304	13.08.15	3,14	5,9	-	-	2.70	PN nach 3x Abpumpen	-	13,2	3,82	6760	2,5	500	2,9	< 0,05	38.0	< 0.05
70631	1305	13.08.15	3,78	5,9	-	-	2,04	PN nach 3x Abpumpen	-	11,2	5,19	4380	2,6	359	< 0,05	0,4	15,8	< 0,05
70641	1306	13.08.15	3,56	5,9	-	-	1,06	PN nach 3x Abpumpen	-	12,5	4,06	6020	1,6	484	3,3	< 0,05	31,1	< 0,05
70651	1307	13.08.15	4,32	6,9	-	-	2,53	PN nach 3x Abpumpen	-	12,6	5,72	3360	2,8	330	< 0,05	1,8	18,1	< 0,05
70661	1308	13.08.15	3,45	5,9	-	-	0,63	PN nach 3x Abpumpen	-	12,7	4,01	8160	2,7	473	2,6	< 0,05	57,2	< 0,05
70671	1309	13.08.15	4,66	6,9	-	-	2,21	PN nach 3x Abpumpen	-	12,3	3,58	3080	3,6	548	4,0	< 0,05	21,9	< 0,05
70681	1310	13.08.15	5,20	6,9	_	-	1,68	PN nach 3x Abpumpen	-	11,7	4,00	4510	3,5	526	3,5	< 0,05	21,9	< 0,05

Projekt Nr. 15-002-40

Montanhydrologisches	Monitori	ng Jahr 201	5	Zusamme	nstellung d	der Analys	energebnis	sse im Ver	gleich zu d	en Schwel	lenwerten	der LAWA					
Probenahme: H. Beyer Umwe					Rammpeg			,	Ĭ								
Analytik: SGS Institut Freseni					rannipog												
Analytik. 866 institut i resem	IUS CITIDIT L	эрсппап															
Labornummer				150806382	150806383	150806381	150806380	150806377	150806378	150806289	150732658		150732648		150806384	150806290	150806379
Markscheidernummer		GFS	oberer M-Wert	61591	61601	61611	61621	61631	61641	61651	61661	61671	61681	61691	61701	61711	61721
Messstellenname			LAWA (1994)	RKB1	RKB2	RKB3	RKB4	RKB5	RKB6	RKB7	RKB8	RKB9	RKB10	RKB11	RKB12	RKB13	RKB14
Grundwasserleiterzuordnung			n Abweichung	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		Max1	Max2											01.09.2015			
Vor-Ort-Analytik:		TTICAX I	Maxe	01.00.2010	01.00.2010	01.00.2010	01.00.2010	01.00.2010	01.00.2010	01.00.2010	10.00.2010	10.00.2010	10.00.2010	01.00.2010	01.00.2010	01.00.2010	01.00.2010
Grundwassertemperatur	°C			13,4	14	16,3	16,1	13	15,6	12,9	13	keine PN	13,5	keine PN	14,4	13,9	14
pH-Wert				5,5	4,5	4,0	4,3	4,1	6,1	6,7	4,2	kein	4,3	Wsp. gering	4,1	5,8	6,2
elektr. Leitfähigkeit	μS/cm			3850	5490	6770	8750	2330	1859	2394	3250	Nachlauf	4100	wop. gomig	2920	2155	2700
Sauerstoff	mg/l			3,9	2,33	2,77	2,99	2,85	3,52	1,6	2,5		3,47		4,46	3,47	6,6
Redoxspannung	mV			275	348	403	372	481	236	168	539		460		434	237	229
KB 4,3 (bei pH<4,3)	mmol/l			< 0.05	0,26	2,42	< 0.05	0,4	< 0.05	< 0,05	0,28		< 0.05		0,77	< 0.05	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l			0,7	< 0,05	< 0,05	< 0,05	< 0,05	2,6	5,8	< 0,05		< 0,05		< 0,05	0,7	2,1
KB 8,2 (bei pH<8,2)	mmol/l			15,8	25,3	31,8	71,7	4,2	3,8	1,7	16,1		27,9		10,5	3,7	1,5
KS 8,2 (bei pH>8,2)	mmol/l			< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05		< 0,05		< 0,05	< 0,05	< 0,05
Nettoazidität	mmol/l			15,1	25,3	31,8	71,7	4,2	1,2	-4,1	16,1		27,9		10,5	3,0	-0,6
Labor:				10,1		01,0	, ,,,	',-	٠,٠	','	10,1		,0		10,0	5,5	5,5
pH-Wert		0,5	1	5	4,1	3,3	3,6	3,6	6	7,2	3,6		3,7		3,7	5,0	6,0
elektr. Leitfähigkeit	μS/cm	10%	15%	3860	5390	6790	9220	2320	1800	2340	3530		4460		3020	2140	2610
Karbonathärte	mgCaO/I	1070	10 /0	20,75	-	-	-	-	72,06	163,19	-		-		-	20,47	57,48
Gesamthärte	mmol/l			19,8	19,5	20,9	24,7	14,5	11,8	15,7	17,4		19,2		15,2	12	17,6
gesamte wirksame Acidität	mmol/l			20,1	54	76	138	2,4	-2,2	-5,4	18,9		31,7		12,3	6	-1,5
TIC	mg/l			63	60	14	11	8,4	44	77	4,9		20		4,2	21	31
DOC	mg/l			4,2	29	5	5,4	2,4	4	2,8	3,6		4,3		6,8	3	11
Ammonium (N)	mg/l			2,7	5	4,8	3,5	0,31	0,37	0,54	2,6		2,9		6,8	2,3	1,8
Nitrat (N)	mg/l			< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0.1	< 0,1	< 0,1		< 0,1		< 0,1	< 0,1	0,6
ortho-Phosphat-P	mg/l			0,031	0,068	0,073	0,015	0,016	0,040	0,013	< 0,005		0,016		0,033	0,062	0,008
Gesamtphosphor (P)	mg/l			0,031	0,068	0,073	0,015	0,016	0,042	0,017	< 0,005		0,016		0,033	0,062	0,015
Sulfat	mg/l	240		2690	4800	5770	10000	1480	1030	1230	3040		3260		2240	1360	1720
Chlorid	mg/l	250		30,3	41,9	178	57,9	45,7	27,3	69,5	9,8		35,7		8,6	19,6	38,5
Sulfid	mg/l	200		00,0	< 0,03	< 0,03	< 0,03	< 0,03	27,0	00,0	< 0,03		< 0,03		< 0,03	10,0	00,0
Calcium (Ca)	mg/l			500	440	436	408	475	392	525	513		489		525	436	593
Magnesium (Mg)	mg/l			178	207	243	353	65	48	62,2	113		169		50,8	26,4	68,4
Natrium (Na)	mg/l			25,8	28,9	38,1	37,4	29,9	20,6	24,6	9,3		21,9		11,3	7,3	16,3
Kalium (K)	mg/l			11,8	19,8	22,9	21	5,9	5,2	6.6	16,4		32,4		13,5	10.7	9,8
Eisen (Fe) gelöst	mg/l			650	1600	2200	4000	21	34	14	490		940		270	110	48
Eisen (2+)	mg/l			650	1500	2100	4000	19	30	13	490		880		260	110	40
Mangan (Mn) gelöst	mg/l		1	18	25	25	57	0,24	1,2	0,77	13		29		7,1	9,5	22
mangan (min) goldet								0,2:	.,_	5 ,					.,.	5,5	
Silizium (Si)	mg/l				41	42	29	7,6			15		21		35		
Aluminium (Al)	mg/l		1		3,8	21	68	7			20		18		16	1	
Arsen (As)	mg/l	0,01	0,06		0,007	0,05	0,019	0,013			0,007		0,02		0,094		
Blei (Pb)	mg/l	0,007	0,2		< 0,005	< 0,005	< 0,005	< 0,005			< 0,005		< 0,005		< 0,005		
Cadmium (Cd)	mg/l	0,0005	0,02		< 0,001	< 0,000	< 0,000	< 0,000			< 0,000		< 0,001		< 0,000	1	
Chrom (Cr) ges.	mg/l	0,007	0,25		0,016	0,057	3	0,009			0,012		0,005		0,009		
Kupfer (Cu)	mg/l	0,014	0,25		< 0,005	< 0,005	< 0,005	< 0,005			0,05		0,007		< 0,005		
Nickel (Ni)	mg/l	0,014	0,25		0,006	0,082	1,6	0,067			0,9		0,035		0,13		
Zink (Zn)	mg/l	0,058	2		0,77	4,3	1,8	0,07			1,9		0,94		1,2		
Ionenbilanz		3,000			2,		.,5				.,5		2,01		- ,=		
Kationensumme	mmoleq/l			65,46	101,61	128,65	204,95	32,35	25,90	33,14	56,94		78,72		44,22	29,29	38,97
Anionensumme	mmoleq/l			57,60	101,12	125,15	209,84	32,10	24,79	33,39	63,57		68,88		46,88	28,87	38,99
Ionenbilanzfehler	%	10	15	6,39	0,24	1,38	-1,18	0,38	2,20	-0,38	-5,50		6,66		-2,92	0,72	-0,03
1011011011011101	/0	10	10	0,00	0,27	1,50	1,10	0,00	۷,۷۰	0,00	0,00		0,00		2,32	0,12	0,00

LMBV VT3 Seite 1 von 2

Projekt Nr. 15-002-40

Montanhydrologisches	Monitori	ing Jahr 201	5	Zusamme	netellung d	lor Analys	norgobnie	sse im Ver	aleich zu d	en Schwel	lenwerten	der I AWA					
			<u> </u>				ener gebins	Se IIII Vei	gieich zu u	en ocnwei	ienwerten	dei LAWA					
Probenahme: H. Beyer Umwe					Rammpeg	eı											
Analytik: SGS Institut Freseni	us GmbH E	spennain															
Labornummer				150806385	150732645	150732646	150732659	150732647	150732649	150732650	150732651	150732652	150732653	150732654	150732656	150732655	150732657
Markscheidernummer		GFS	oberer M-Wert	61751	61761	61771	61781	70591	70601	70611	70621	70631	70641	70651	70661	70671	70681
Messstellenname		LAWA (2004)	LAWA (1994)	RKB17	RKB18	RKB19	RKB20	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310
Grundwasserleiterzuordnung		Prüfkriteriun	n Abweichung	Ki	Ki	Ki	Ki	K	K	K	K	K	K	K	K	K	K
Probenahmedatum		Max1	Max2	04.09.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015
Vor-Ort-Analytik:																	
Grundwassertemperatur	°C			14,2	13	12,6	12,3	13,2	13,4	12,4	13,2	11,2	12,5	12,6	12,7	12,3	11,7
pH-Wert				3,7	4,4	4,3	3,7	3,5	4,4	4,1	3,8	5,2	4,1	5,7	4,0	3,6	4,0
elektr. Leitfähigkeit	μS/cm			3730	1350	3850	2730	4360	4420	4890	6760	4380	6020	3360	8160	3080	4510
Sauerstoff	mg/l			4,22	3,05	1,53	2,39	2,51	2,7	4,4	2,52	2,55	1,61	2,78	2,67	3,57	3,52
Redoxspannung	mV			446	574	478	568	558	446	472	500	359	484	330	473	548	526
KB 4,3 (bei pH<4,3)	mmol/l			2,66	< 0,05	< 0,05	3,1	11,4	< 0,05	0,8	2,94	< 0,05	3,3	< 0,05	2,55	4	3,45
KS 4,3 (bei pH>4,3)	mmol/l			< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,4	< 0,05	1,8	< 0,05	< 0,05	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l			21,8	2,8	17,7	12,2	29,1	17,6	18,4	38,0	15,8	31,1	18,1	57,2	21,9	21,9
KS 8,2 (bei pH>8,2)	mmol/l			< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Nettoazidität	mmol/l			21,8	2,8	17,7	12,2	29,1	17,6	18,4	38,0	15,4	31,1	16,4	57,2	21,9	21,9
Labor:		0.5		0.0	0.0	0.7	0.0	0.4	4	0.0	0.0	4.0	0.0	F 4	0.4	0.4	0.0
pH-Wert	0/	0,5	1	3,2	3,9	3,7	3,3	3,1	4	3,8	3,2	4,6	3,3	5,1	3,4	3,1	3,3
elektr. Leitfähigkeit	μS/cm	10%	15%	3680	1450	4160	2960	4770	4820	5350	7480	4750	6660	3680	9070	3290	4920
Karbonathärte	mgCaO/I			- 10.5	-	16,3	- 14.0	- 45.0	- 24.2	- 10.6	- 22.4	11,22 20,1	- 40.0	49,07	- 22.4	- 14,9	- 17.0
Gesamthärte gesamte wirksame Acidität	mmol/l mmol/l			16,5 21,3	6,64 7,7	32,4	14,9 14,4	15,9 49,7	21,3 36,4	19,6 49,4	23,4 91,1	35,7	19,6 85,7	17,5 18,5	23,1 140	22,9	17,9 47,5
TIC				34	6,5	49	17	11	8,6	28	20	36	28	18	27	12	5,4
DOC	mg/l mg/l			13	4,9	6,8	27	7,7	5	3,6	4,3	9,9	5	2,6	6,9	9,4	4
Ammonium (N)	mg/l			7,5	0,93	3,3	6,2	3,3	3,9	2,5	3,3	5	4,3	1,9	6,3	3,5	3,8
Nitrat (N)	mg/l			< 0,1	< 0,1	0,2	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/l			0,087	< 0,005	0,075	< 0,005	0,078	< 0,005	< 0,005	< 0,005	0,007	< 0,005	0,01	< 0,005	0,007	< 0,005
Gesamtphosphor (P)	mg/l			0,087	< 0,005	0,075	< 0,005	0,078	< 0,005	< 0,005	< 0,005	0,007	< 0,005	0,01	< 0,005	0,007	< 0,005
Sulfat	mg/l	240		2840	787	2980	2380	3990	3850	4550	7870	3720	6970	2340	10400	2180	3960
Chlorid	mg/l	250		41,6	10,8	14,3	8,4	37,2	15,8	45,8	29,4	22,4	23,1	14,7	36,7	6,4	4,8
Sulfid	mg/l			< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	,	< 0,03	,.	< 0,03	< 0,03	< 0,03
Calcium (Ca)	mg/l			525	218	477	547	492	475	463	436	494	450	533	438	504	569
Magnesium (Mg)	mg/l			83,7	9,8	107	29,9	87,8	229	196	305	188	204	102	296	56,2	89,8
Natrium (Na)	mg/l			18,3	3,6	12,1	5,5	48,1	21	32,8	31	21	23,7	14,6	25,8	7,3	5,2
Kalium (K)	mg/l			43,1	3,2	14,2	10,5	28,9	21,5	16,8	19	23,6	24,4	7,2	31,1	6,1	29
Eisen (Fe) gelöst	mg/l			580	86	860	290	960	950	1200	2800	1100	2500	480	4200	340	1200
Eisen (2+)	mg/l			550	49	830	260	890	950	1100	2400	1100	2200	440	3800	340	1200
Mangan (Mn) gelöst	mg/l			6,4	2,9	16	3,4	6	32	36	71	82	40	18	91	11	19
Silizium (Si)	mg/l			49	29	50	56	62	35	9,9	25		39		48	48	18
Aluminium (AI)	mg/l			28	23	20	22	200	16	30	17		80		56	92	36
Arsen (As)	mg/l	0,01	0,06	0,21	0,006	0,072	0,021	0,038	0,037	0,022	0,014		0,036		0,016	0,019	0,011
Blei (Pb)	mg/l	0,007	0,2	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005		< 0,005		< 0,005	< 0,005	< 0,005
Cadmium (Cd)	mg/l	0,0005	0,02	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001		< 0,001		< 0,001	0,003	< 0,001
Chrom (Cr) ges.	mg/l	0,007	0,25	0,043	< 0,005	0,006	0,018	0,015	0,13	0,01	0,006		0,011		0,028	0,053	0,007
Kupfer (Cu)	mg/l	0,014	0,25	< 0,005	0,01	< 0,005	0,011	0,015	< 0,005	0,019	0,006		< 0,005		< 0,005	0,038	0,018
Nickel (Ni)	mg/l	0,014	0,25	0,31	0,2	0,27	0,36	0,5	5,9	0,43	0,11		0,28		0,13	0,71	3,2
Zink (Zn)	mg/l	0,058	2	1,4	0,57	3,1	0,96	1,2	0,99	2,1	4,8		3,1		8,8	1,1	6,4
Ionenbilanz												-					
Kationensumme	mmoleq/l			60,80	19,03	68,50	44,99	93,73	81,65	103,71	161,46	84,87	146,95	55,00	216,08	54,10	85,48
Anionensumme	mmoleq/l			60,30	16,69	62,46	49,79	84,12	80,60	96,02	164,69	78,08	145,77	50,88	217,57	45,57	82,58
Ionenbilanzfehler	%	10	15	0,41	6,54	4,61	-5,06	5,40	0,64	3,85	-0,99	4,16	0,40	3,89	-0,34	8,56	1,73

LMBV VT3 Seite 2 von 2

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61791

Markscheidernummer		61791	61791	61791	61791	61791	61791	61791
Messstellenname		M1-1	M1-1	M1-1	M1-1	M1-1	M1-1	M1-1
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ly I	19.09.07	19.12.07		22.07.08		11.02.09	15.04.09
Vor-Ort-Parameter		19.09.01	19.12.07	21.04.00	22.07.00	00.11.00	11.02.09	13.04.03
Grundwassertemperatur	°C	12,5	10,9	12,4	14,9	12,1	8,6	15,5
pH-Wert	U	5,26	5,12	5,08	5,28	5,13	5,34	5,30
elektr. Leitfähigkeit	μS/cm	8000	8030	7820	8100	6660	8380	8380
Sauerstoff	mg/l	0,8	1,1	1,8	2,3	1,4	1,5	0,6
Redoxspannung	mV	250	73	88	-19	80	204	43
KB 4,3 (bei pH<4,3)	mmol/l	230	73	00	-13	00	-	70
KS 4,3 (bei pH>4,3)	mmol/l	1,8	1,4	2,0	1,5	2,1	2,0	1,3
KB 8,2 (bei pH<8,2)	mmol/l	38,5	66,5	43,6	51,3	62,5	38,1	77,8
KS 8,2 (bei pH>8,2)	mmol/l	30,3	00,0	70,0	31,3	02,0	50,1	77,0
Laboranalytik	11111101/1							
pH-Wert		5,1	5,0	5,1	4,9	5,0	5,0	5,1
elektr. Leitfähigkeit	μS/cm	8290	7790	7940	7990	8340	8350	7750
Gesamttrockenrückstand	mg/l	13000	12100	12600	11800	12800	13600	13700
Filtrattrockenrückstand	mg/l	13000	11500	12500	11780	12100	13500	13300
Karbonathärte	mgCaO/l	13000	39,2	56,1	42,1	58,90	56,10	36,5
Gesamthärte	mmol/l	23	22,8	21,2	19,7	21,9	21,1	20,5
ges. wirksame Acidität	mmol/l	99,1	22,0	21,2	13,1	21,9	21,1	20,5
TIC	mg/l	230	137	144	185	205	190	240
DOC	mg/l	5,8	9,4	7,6	7,7	6,7	7,2	6,7
Ammonium (N)	mg/l	8,47	10,3	8,69	11,1	14,7	9,85	9,79
Nitrat (N)	mg/l	<1,1	0,3	0,03	<0,02	0,06	0,03	0,1
Nitrit (N)	mg/l	<0,015	0,5	0,3	\0,02	0,00	0,03	0,1
Phosphat-ortho (P)	mg/l	0,026	0,098	0,075	<0,007	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	1,24	0,030	0,065	0,069	0,007	0,007	0,059
Sulfat	mg/l	7570	7020	7950	7430	7640	8620	8390
Chlorid	mg/l	175	153	32	167	158,0	153,0	147
Fluorid	mg/l	<0,2	100	02	107	100,0	100,0	177
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	507	483	428	393	430	409	400
Magnesium (Mg)	mg/l	251	260	256	241	271	264	256
Natrium (Na)	mg/l	172	206	177	193	186	160	172
Kalium (K)	mg/l	26,6	32,7	49,5	48,1	54,1	32,3	53,5
Eisen (Fe), gesamt	mg/l	3430	02,1	10,0	10,1	01,1	02,0	00,0
Eisen (Fe) gelöst	mg/l	3120	3010	2880	2870	3100	3320	3420
Eisen (2+)	mg/l	3155	2970	2800	1620	3080	3070	3030
Mangan (Mn) gesamt	mg/l	47,8						
Mangan (Mn) gelöst	mg/l	,0	54,2	45,7	46,6	53,1	56,9	47,9
Silizium (Si)	mg/l	10,3	J .,=	,,	. 5, 5	30,1	35,0	,•
Aluminium (AI)	mg/l	2,58						
Arsen (As)	mg/l	_,						
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		106,3	93,8	98,4	103,8	103,8	101,2
Summe Anionen	mmoleq/l		92,8	106,1	118,5	102,5	122,2	116,6
Ionenbilanz-Fehler	%	1,20	6,8	-6,1	-9,3	0,6	-8,1	-7,1
CSB	mg/l	441	-,-	,	-,-	-,-	-,-	, .
	J .							

LMBV VT3 Seite 1 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61791

Vor-Ort-Parameter	61792 M1-1 Ki 28.02.12	61791 M1-1
Grundwasserleiterzuordnung Ki Ki Ki Probenahmedatum 22.07.09 02.11.09 18.05.10 Vor-Ort-Parameter	Ki	
Probenahmedatum 22.07.09 02.11.09 18.05.10 Vor-Ort-Parameter 20.07.09 02.11.09 18.05.10		
Vor-Ort-Parameter	しつり ハウ 1つ	Ki
	20.02.12	26.08.15
	40.4	40.5
Grundwassertemperatur °C 18,5 10,1 12,4	10,4	13,5
pH-Wert - 5,07 5,08 4,87	5,28	5,20
elektr. Leitfähigkeit µS/cm 8340 8500 8330	7670	7750
Sauerstoff mg/l 0,8 0,4 1,0	1,5	1,6
Redoxspannung mV 81 23 118	125	318
KB 4,3 (bei pH<4,3) mmol/l		< 0,05
KS 4,3 (bei pH>4,3) mmol/l 1,7 1,8 2,0	1,1	0,2
KB 8,2 (bei pH<8,2) mmol/l 81,3 75,7 76,8	99,6	34,5
KS 8,2 (bei pH>8,2) mmol/l		< 0,05
Laboranalytik		
pH-Wert 4,9 4,8 5,1	4,8	4,6
elektr. Leitfähigkeit µS/cm 8210 8270 7860	8140	8430
Gesamttrockenrückstand mg/l 12600 12800 12140	15100	
Filtrattrockenrückstand mg/l 12500 12680 11940	13500	
Karbonathärte mgCaO/l 47,7 50,5 56,1	30,8	4,2
Gesamthärte mmol/l 20,7 21,1 21,8	19,9	20,4
ges. wirksame Acidität mmol/l		66,4
TIC mg/l 250 260 250	220	56
DOC mg/l 7,2 7,4 6	6,8	12
Ammonium (N) mg/l 10,5 10,1 10,8	16,3	22
Nitrat (N) mg/l 0,2 1,3 < 0,02	< 0,05	< 0,1
Nitrit (N) mg/l		
Phosphat-ortho (P) mg/l 0,01 <0,007 0,01	<0,007	0,01
Phosphor gesamt (P) mg/l 0,053 0,047 0,150	0,190	0,020
Sulfat mg/l 7360 7960 7200	7470	7000
Chlorid mg/l 148 163 175	58,7	97,8
Fluorid mg/l		
Sulfid mg/l < 0,04 < 0,04 < 0,04	< 0,04	
Calcium (Ca) mg/l 419 450 430	450	461
Magnesium (Mg) mg/l 249 240 270	210	216
Natrium (Na) mg/l 172 200 210	56	111
Kalium (K) mg/l 35,7 35,0 36,0	49,0	50,1
Eisen (Fe), gesamt mg/l		
Eisen (Fe) gelöst mg/l 2750 3100 2740	3340	2000
Eisen (2+) mg/l 2660 2390 2736	3120	1800
Mangan (Mn) gesamt mg/l		
Mangan (Mn) gelöst mg/l 50,7 47 42	40	29
Silizium (Si) mg/l 9,3		
Aluminium (Al) mg/l 3,1		
Arsen (As) mg/l 0,009		
Blei (Pb) mg/l 0,002		
Cadmium (Cd) mg/l < 0,0002		
Chrom (Cr) ges. mg/l 0,001		
Kupfer (Cu) mg/l 0,002		
Nickel (Ni) mg/l 2,1		
Zink (Zn) mg/l 3,5		
IONENBILANZ		
Summe Kationen mmoleq/l 88,9 105,4 96,4	102,3	126,7
Summe Anionen mmoleq/l 99,2 119,1 98,0	99,8	148,5
Ionenbilanz-Fehler % -5,5 -6,1 -0,9	1,2	-7,9
CSB mg/l		

LMBV VT3 Seite 2 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61792

Markscheidernummer	1	61792	61792	61792	61792	61792	61792	61792
Messstellenname		M1-2	M1-2	M1-2	M1-2	M1-2	M1-2	M1-2
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	19.09.07	19.12.07				11.02.09	15.04.09
Vor-Ort-Parameter		19.09.07	19.12.07	21.04.06	22.07.00	00.11.00	11.02.09	15.04.09
Grundwassertemperatur	°C	10.4	11,6	13	15,2	12,2	8,9	16,4
•	C	12,4						
pH-Wert		5,74	5,1	5,17	5,32	5,29	5,49	5,50
elektr. Leitfähigkeit	μS/cm	5900	6010	6300	6540	6640	6490	6470
Sauerstoff	mg/l	0,7	0,7	1,9	1,4	1,5	0,7	0,5
Redoxspannung	mV	270	70	82	-20	81	133	45
KB 4,3 (bei pH<4,3)	mmol/l			4.0	0.4	0.4	-	
KS 4,3 (bei pH>4,3)	mmol/l	2,2	1,7	1,9	2,4	2,4	2,2	2,8
KB 8,2 (bei pH<8,2)	mmol/l	54,1	40,5	30,1	31,5	37,3	22,9	41,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik	T							
pH-Wert		5,7	5,2	5,2	5,1	5,2	5,2	5,2
elektr. Leitfähigkeit	μS/cm	6090	5550	6300	6500	6540	6500	6210
Gesamttrockenrückstand	mg/l	8100	8560	8380	8400	8650	8860	8690
Filtrattrockenrückstand	mg/l	8100	8430	8310	8190	8500	8320	8640
Karbonathärte	mgCaO/I		47,6	47,7	67,3	67,30	61,70	78,50
Gesamthärte	mmol/l	23	24,1	22,3	21,2	23,4	23,8	23,5
ges. wirksame Acidität	mmol/l	48,5						
TIC	mg/l	268	149	147	202	250	216	230
DOC	mg/l	4	8,5	6,1	6,1	5,9	9,6	6
Ammonium (N)	mg/l	19,9	19,1	0,59	33,7	38,6	37,5	38,2
Nitrat (N)	mg/l	<1,1	1	1	<0,02	0,03	< 0,02	0,10
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,018	0,055	0,036	0,046	<0,007	0,008	<0,007
Phosphor gesamt (P)	mg/l	0,59	0,04	0,042	0,083	0,047	0,032	0,042
Sulfat	mg/l	4710	4710	5250	5110	5420	5260	5540
Chlorid	mg/l	232	212	312	206	201	204	205
Fluorid	mg/l	0,35						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	503	504	434	410	440	438	421
Magnesiùm (Mg)	mg/l	254	279	278	267	301	312	315
Natrium (Na)	mg/l	91,3	110	102	117	125	124	128
Kalium (K)	mg/l	45,2	53,3	68	72,6	89,2	85,4	84,7
Eisen (Fe), gesamt	mg/l	1650	- , -		,-	- ,-	-,-	, .
Eisen (Fe) gelöst	mg/l	1530	1820	1600	1780	1640	1540	1490
Eisen (2+)	mg/l	1425	1470	1590	1710	1500	1490	1470
Mangan (Mn) gesamt	mg/l	25,5						
Mangan (Mn) gelöst	mg/l		30,9	28,9	27,8	29,9	31,9	30,3
Silizium (Si)	mg/l	15,3	30,0		,0	_0,0	31,0	30,0
Aluminium (Al)	mg/l	1,37						
Arsen (As)	mg/l	.,51						
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ	my/i							
Summe Kationen	mmolog/I		Q1 2	68,8	72.0	74,3	73,5	68.2
Summe Anionen	mmoleq/l		81,3		73,9 73,9	80,8	73,5	68,2
	mmoleq/l %	0.7	69,0	79,3				82,4
lonenbilanz-Fehler		0,7	8,2	-7,1	<0,01	-4,2	-3,9	-9,5
CSB	mg/l	222						

LMBV VT3 Seite 3 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61792

Markscheidernummer		61792	61792	61792	61792	61792
Messstellenname		M1-2	M1-2	M1-2	M1-2	M1-2
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19	22.07.09		18.05.10	28.02.12	
Vor-Ort-Parameter		22.01.03	JZ.11.U3	10.00.10	20.02.12	20.00.10
Grundwassertemperatur	°C	18,2	10,9	13,7	10,2	15,6
pH-Wert	-	5,18	5,72	5,51	5,66	5,60
elektr. Leitfähigkeit	μS/cm	6760	7210	7150	7110	6390
Sauerstoff						
	mg/l mV	0,9 63	0,5 -20	1,1 54	1,6 70	2,2
Redoxspannung		03	-20	54	70	325
KB 4,3 (bei pH<4,3)	mmol/l	2.2	0.7	2.0	0.4	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	2,3	2,7	2,2	2,1	0,5
KB 8,2 (bei pH<8,2)	mmol/l	52,7	44,1	42,3	66,2	25,1
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik		5.0	5.0	5 4	5.0	F 4
pH-Wert	0.1	5,2	5,2	5,4	5,2	5,1
elektr. Leitfähigkeit	μS/cm	6710	6950	6940	7460	6950
Gesamttrockenrückstand	mg/l	9070	9390	9150	11700	
Filtrattrockenrückstand	mg/l	8690	9620	8810	10700	4
Karbonathärte	mgCaO/l	64,5	75,7	61,7	58,9	14,02
Gesamthärte	mmol/l	24,3	26,0	25,5	22,7	22,2
ges. wirksame Acidität	mmol/l					73,4
TIC	mg/l	250	260	240	210	21
DOC	mg/l	6,4	6,6	6,3	5,5	7,4
Ammonium (N)	mg/l	38,4	33,3	44,6	37,1	26
Nitrat (N)	mg/l	0,1	0,1	0,1	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,01	<0,007	0,01	<0,007	0,04
Phosphor gesamt (P)	mg/l	0,053	0,140	0,110	0,050	0,049
Sulfat	mg/l	5350	5930	5850	6130	6420
Chlorid	mg/l	191	193	196	91,4	138
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	434	480	430	480	437
Magnesium (Mg)	mg/l	327	340	360	260	274
Natrium (Na)	mg/l	109	130	140	54	39,4
Kalium (K)	mg/l	86,6	87,0	110,0	130,0	64,7
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	1660	1800	1660	2190	2400
Eisen (2+)	mg/l	1380	1360	1652	2090	2200
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	35,1	35	34	45	41
Silizium (Si)	mg/l					
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ						
Summe Kationen	mmoleq/l	73,1	78,8	77,8	83,9	140,6
Summe Anionen	mmoleq/l	77,6	92,6	85,6	87,0	158,2
Ionenbilanz-Fehler	%	-3,0	-8,05	-4,8	-1,8	-5,9
CSB	mg/l	0,0	3,00	1,0	1,0	0,0
000	1119/1					

LMBV VT3 Seite 4 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61793

Markscheidernummer		61793	61793	61793	61793	61793	61793	61793
Messstellenname		M1-3	M1-3	M1-3	M1-3	M1-3	M1-3	M1-3
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ľ	19.09.07	08.01.08	21.04.08	23.07.08	06.11.08	11.02.09	15.04.09
Vor-Ort-Parameter	•							
Grundwassertemperatur	°C	12,9	11,1	13,8	15,1	12,3	7,0	16,8
pH-Wert	-	5,92	5,57	5,74	5,85	5,73	6,0	5,9
elektr. Leitfähigkeit	μS/cm	6900	6330	5940	6030	6120	5870	5770
Sauerstoff	mg/l	0,6	1,1	1,6	0,8	1,0	1,1	0,4
Redoxspannung	mV	230	124	42	-59	46	25	-22
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	5,4	3,0	3,5	3,5	3,8	3,6	4,0
KB 8,2 (bei pH<8,2)	mmol/l	39,7	37,4	20,5	21,2	3,8	18,4	30,9
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		6,2	5,7	5,5	5,5	5,6	5,6	5,6
elektr. Leitfähigkeit	μS/cm	6670	5340	5970	5960	5310	5820	5550
Gesamttrockenrückstand	mg/l	8000	8520	9710	7620	8240	8520	8520
Filtrattrockenrückstand	mg/l	8000	7500	7290	7560	7380	7500	7560
Karbonathärte	mgCaO/l		85,12	67,3	98,1	106,6	100,9	112,2
Gesamthärte	mmol/l	18,5	18,7	17,9	19,2	19,4	19,2	19,1
ges. wirksame Acidität	mmol/l	32,6						
TIC	mg/l	147	175	108	151	172	179	180
DOC	mg/l	5,8	8,6	6,1	5,9	6,7	4	4,7
Ammonium (N)	mg/l	3,56	3,87	3,57	3,4	4,92	3,52	3,36
Nitrat (N)	mg/l	<1,1	0,3	4,6	2,7	0,03	0,08	0,1
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,015	0,046	0,036	<0,007	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	0,38	0,04	0,81	0,007	0,240	0,067	0,170
Sulfat	mg/l	4870	4150	4260	4070	4290	4380	4340
Chlorid	mg/l	223	247	402	281	269	278	291
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	0,17	<0,04	<0,04	0,07	0,046	0,08
Calcium (Ca)	mg/l	450	448	445	473	481	470	462
Magnesium (Mg)	mg/l	178	182	164	180	181	182	184
Natrium (Na)	mg/l	780	285	190	248	227	197	197
Kalium (K)	mg/l	23	30,9	32,6	33,4	33,8	21,8	33,7
Eisen (Fe), gesamt	mg/l	1340						
Eisen (Fe) gelöst	mg/l	1110	1440	1370	1400	1420	1420	1280
Eisen (2+)	mg/l	1044	1100	1360	1400	1350	1310	1270
Mangan (Mn) gesamt	mg/l	22,1						
Mangan (Mn) gelöst	mg/l		24,2	24	25,6	26,3	27,1	25,1
Silizium (Si)	mg/l	12,5						
Aluminium (AI)	mg/l	<0,1						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		68,9	63,1	68,8	67,8	66,1	60,8
Summe Anionen	mmoleq/l		67,6	71,1	63,2	68,4	73,4	70,8
Ionenbilanz-Fehler								
CSB	% mg/l	-0,3 177	1,0	-6,0	4,2	-0,4	-5,3	-7,6

LMBV VT3 Seite 5 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61793

Markscheidernummer		61793	61793	61793	61793	61793
Messstellenname		M1-3	M1-3	M1-3	M1-3	M1-3
Grundwasserleiterzuordnur	l	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	I	22.07.09	02.11.09	18.05.10	28.02.12	
Vor-Ort-Parameter		22.01.03	02.11.09	10.00.10	20.02.12	20.00.10
Grundwassertemperatur	°C	18,9	11,7	14,5	9,3	14,9
pH-Wert		5,6	5,5	5,5	6,0	5,9
elektr. Leitfähigkeit	μS/cm	5980	6050	5940	5420	5540
Sauerstoff	mg/l	0,8	0,5	0,9	6,0	1,3
Redoxspannung	mV	5	-22	13	20	251
KB 4,3 (bei pH<4,3)	mmol/l	3	-22	13	20	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	3,2	4,0	3,5	4,2	1,3
KB 8,2 (bei pH<8,2)	mmol/l	31,8	47,6	47,8	38,9	15,6
KS 8,2 (bei pH>8,2)	mmol/l	31,0	77,0	47,0	30,3	< 0,05
Laboranalytik	11111101/1					10,00
pH-Wert		5,5	5,4	5,6	5,8	5,4
elektr. Leitfähigkeit	μS/cm	5820	5840	5660	5610	5960
Gesamttrockenrückstand	mg/l	7840	8530	8490	9270	3900
Filtrattrockenrückstand	mg/l	7560	7570	7310	7160	
Karbonathärte	mgCaO/l	89,7	112,2	98,1	117,8	36,73
Gesamthärte	mmol/l	19,4	19,7	19,1	19,1	22,1
ges. wirksame Acidität	mmol/l	15,4	13,7	13,1	13,1	42,3
TIC	mg/l	190	180	190	190	7
DOC	mg/l	5,2	5,6	5,5	5,3	13
Ammonium (N)	mg/l	3,10	2,74	2,52	2,17	6,00
Nitrat (N)	mg/l	0,1	0,3	0,1	< 0,05	< 0,1
Nitrit (N)	mg/l	0,1	0,0	0,1	1 0,00	10,1
Phosphat-ortho (P)	mg/l	<0,007	0,01	0,02	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,038	0,076	0,070	0,490	0,140
Sulfat	mg/l	4380	4390	4310	3960	4300
Chlorid	mg/l	282	286	295	195	219
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	481	510	470	520	517
Magnesium (Mg)	mg/l	181	170	180	150	223
Natrium (Na)	mg/l	170	196	190	140	97,1
Kalium (K)	mg/l	21,4	20,0	18,0	17,0	26,0
Eisen (Fe), gesamt	mg/l	.,.	-,-	-,-	,-	-,-
Eisen (Fe) gelöst	mg/l	1510	1450	1320	1330	1400
Eisen (2+)	mg/l	1280	1190	1314	1330	1400
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	29,2	28	24	25	24
Silizium (Si)	mg/l	,	-			
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ						
Summe Kationen	mmoleq/l	63,9	66,0	62,4	62,7	100,5
Summe Anionen	mmoleq/l	69,1	70,9	68,4	63,3	97,0
Ionenbilanz-Fehler	%	-3,9	-3,57	-4,6	-0,5	1,8
CSB	mg/l					
	-					

LMBV VT3 Seite 6 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61794

Markscheidernummer		61794	61794	61794	61794	61794	61794	61794
Messstellenname		M1-4	M1-4	M1-4	M1-4	M1-4	M1-4	M1-4
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	iy I	19.09.07		21.04.08		06.11.08		15.04.09
Vor-Ort-Parameter		19.09.07	06.01.06	21.04.06	22.07.00	00.11.00	11.02.09	15.04.09
	°C	12.6	11	12	15.0	12.4	0.4	17.7
Grundwassertemperatur	U	12,6	11	13	15,2	12,4	9,4	17,7
pH-Wert	- 0/	5,4	5,5	5,4	5,5	5,4	5,6	5,5
elektr. Leitfähigkeit	μS/cm	5700	5400	5220	5320	5400	5220	5190
Sauerstoff	mg/l	0,5	2,1	1,9	1,2	1,2	0,8	0,4
Redoxspannung	mV	240	50	76	-18	75	119	39
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	2,1	1,7	1,8	1,4	1,7	3,6	1,8
KB 8,2 (bei pH<8,2)	mmol/l	42,5	37,5	20,7	23,2	24,3	19,4	29,3
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik	T							
pH-Wert		5,6	5,5	5,2	5,0	5,3	5,3	5,2
elektr. Leitfähigkeit	μS/cm	5570	5570	5220	5250	5290	5150	4960
Gesamttrockenrückstand	mg/l	7300	7070	7170	7170	7100	7270	7320
Filtrattrockenrückstand	mg/l	7200	7000	7060	6820	6920	6930	6880
Karbonathärte	mgCaO/I		46,48	26,6	39,3	47,70	44,90	50,50
Gesamthärte	mmol/l	19,1	18,8	17	17,8	18,3	19,2	18,2
ges. wirksame Acidität	mmol/l	43,3						
TIC	mg/l	196	132	74	98	154	161	170
DOC	mg/l	3,9	5,1	3,8	3,7	3,5	3,8	3,4
Ammonium (N)	mg/l	2,59	1,61	1,43	3,05	3,54	1,93	2,11
Nitrat (N)	mg/l	1,1	0,3	1,4	<0,02	0,05	< 0,02	< 0,05
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,016	0,026	0,029	0,039	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	0,41	0,04	0,052	0,083	0,040	0,032	0,069
Sulfat	mg/l	4450	4070	4040	4160	4220	4270	4160
Chlorid	mg/l	180	178	176	197	186	184	188
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	0,09	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	481	464	430	444	455	470	442
Magnesium (Mg)	mg/l	173	176	152	164	168	182	174
Natrium (Na)	mg/l	180	133	81,6	80,7	101	86,8	68,9
Kalium (K)	mg/l	15,5	23,6	25,6	22,8	24,2	14,9	24,3
Eisen (Fe), gesamt	mg/l	1490	·	,	·	,	·	,
Eisen (Fe) gelöst	mg/l	1350	1480	1380	1470	1400	1340	1270
Eisen (2+)	mg/l	1230	1280	1350	1430	1350	1310	1260
Mangan (Mn) gesamt	mg/l	24,3						
Mangan (Mn) gelöst	mg/l	,	24,4	23,4	22,9	24,1	26,3	24,9
Silizium (Si)	mg/l	13,4	, -	-,-	,-	, -	- , -	,-
Aluminium (AI)	mg/l	1,41						
Arsen (As)	mg/l	.,						
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ	1119/1							
Summe Kationen	mmoleq/l		64,8	57,6	60,2	60,3	59,6	54,1
Summe Anionen	mmoleq/l		61,6	59,6	61,3	63,4	65,6	62,6
Ionenbilanz-Fehler	%	-2,0	2,5			-2,5	-4,8	-7,3
CSB			۷,5	-1,8	-0,9	-2,0	-4 ,0	د, ۱-
dob	mg/l	203						

LMBV VT3 Seite 7 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61794

Markscheidernummer		61794	61794	61794	61794	61794
Messstellenname		M1-4	M1-4	M1-4	M1-4	M1-4
Grundwasserleiterzuordnur	l	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	I	22.07.09	02.11.09	18.05.10	28.02.12	
Vor-Ort-Parameter		22.01.03	JZ. 11.US	10.00.10	20.02.12	20.00.10
Grundwassertemperatur	°C	18,6	11,1	13,4	9,6	14,4
pH-Wert	-	5,3	5,2	5,5	5,6	5,5
elektr. Leitfähigkeit	μS/cm	5900	5730	5040	7220	7030
Sauerstoff	mg/l	0,6	0,4	0,6	0,9	1,8
Redoxspannung	mV	50	-5	60	65	288
KB 4,3 (bei pH<4,3)	mmol/l	30	-5	00	0.5	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	1,9	2,8	1,6	1,9	0,5
KB 8,2 (bei pH<8,2)	mmol/l	34,4	45,2	44,1	75,3	32,1
KS 8,2 (bei pH>8,2)	mmol/l	57,7	75,2	77,1	7 3,3	< 0,05
Laboranalytik	11111101/1					10,00
pH-Wert		5,2	5,2	5,9	5,2	5,0
elektr. Leitfähigkeit	μS/cm	5390	5600	5290	7430	7640
Gesamttrockenrückstand	mg/l	7270	7710	7810	12600	, 040
Filtrattrockenrückstand	mg/l	7200	7480	7110	10600	
Karbonathärte	mgCaO/l	53,3	78,5	44,9	53,3	12,62
Gesamthärte	mmol/l	19,2	20,5	20,9	26,0	23,0
ges. wirksame Acidität	mmol/l	10,2	20,0	20,5	20,0	96,1
TIC	mg/l	190	190	190	180	35
DOC	mg/l	3,7	3,7	3,3	4,4	8,6
Ammonium (N)	mg/l	2,77	1,5	1,52	1,66	4
Nitrat (N)	mg/l	0,1	0,05	< 0,02	< 0,05	< 0,1
Nitrit (N)	mg/l	0,1	0,00	10,02	1 0,00	10,1
Phosphat-ortho (P)	mg/l	<0,007	<0,007	0,03	<0,007	0,03
Phosphor gesamt (P)	mg/l	0,043	0,063	0,100	0,050	0,072
Sulfat	mg/l	4450	4470	4650	6300	6910
Chlorid	mg/l	193	200	237	166	164
Fluorid	mg/l	100	200	207	100	101
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	465	490	460	480	446
Magnesium (Mg)	mg/l	184	200	230	340	289
Natrium (Na)	mg/l	100	100	90	50	44,3
Kalium (K)	mg/l	14,9	15,0	14,0	15,0	23,8
Eisen (Fe), gesamt	mg/l	,0	. 5,5	.,,	. 5,5	
Eisen (Fe) gelöst	mg/l	1480	1470	1540	2340	2300
Eisen (2+)	mg/l	1310	1220	1534	2310	2100
Mangan (Mn) gesamt	mg/l		.==•		==.•	
Mangan (Mn) gelöst	mg/l	27,9	28	29	47	70
Silizium (Si)	mg/l	,0			• • •	· •
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ						
Summe Kationen	mmoleq/l	60,0	64,0	65,4	87,4	162,4
Summe Anionen	mmoleq/l	65,9	68,4	68,8	87,9	168,5
Ionenbilanz-Fehler	%	-4,7	-3,3	-3,3	-0,3	-1,8
CSB	mg/l	,.	-,-	-,-	-,-	,-
						L

LMBV VT3 Seite 8 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61795

Markashaidarnummar	I	61705	61705	61705	61705	61705	61705	61705
Markscheidernummer		61795	61795	61795	61795	61795	61795	61795
Messstellenname		M1-5						
Grundwasserleiterzuordnur	ng	Ki						
Probenahmedatum		19.09.07	09.01.08	21.04.08	23.07.08	06.11.08	11.02.09	15.04.09
Vor-Ort-Parameter	00	40.0	0.0	40.0	47.0	40.4	0.0	47.0
Grundwassertemperatur	°C	12,8	9,2	13,3	17,2	12,4	8,9	17,2
pH-Wert	-	5,4	5,4	5,4	5,5	5,6	5,8	5,8
elektr. Leitfähigkeit	μS/cm	6200	5690	5350	5340	5160	4930	4810
Sauerstoff	mg/l	0,5	1,0	1,8	1,2	1,0	0,8	0,5
Redoxspannung	mV	250	103	78	-32	70	67	-1
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	2,2	2,4	2,3	2,7	3,1	3,3	3,9
KB 8,2 (bei pH<8,2)	mmol/l	46,7	36,2	22,1	23,5	21,5	17,9	29,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,5	5,6	5,3	5,3	5,5	5,5	5,6
elektr. Leitfähigkeit	μS/cm	6200	5330	5290	5250	5030	4860	4720
Gesamttrockenrückstand	mg/l	8000	10600	8120	6870	6740	6370	6400
Filtrattrockenrückstand	mg/l	8000	7990	7060	6830	6330	6220	6080
Karbonathärte	mgCaO/l		67,2	64,5	75,7	86,90	92,50	109,40
Gesamthärte	mmol/l	19,9	17,6	17,5	19,7	19,4	19,5	18,7
ges. wirksame Acidität	mmol/l	42,8	,	·	,	,	,	·
TIC	mg/l	136	118	120	177	192	202	220
DOC	mg/l	3,1	7,8	4,2	6,3	4,9	4,8	5,1
Ammonium (N)	mg/l	5,91	7,38	5,6	5,56	7,11	5,91	6,01
Nitrat (N)	mg/l	<1,1	0,4	1,2	<0,02	0,04	< 0,02	0,1
Nitrit (N)	mg/l	<0,015	-) -	,-	-,	-,	-,	-,-
Phosphat-ortho (P)	mg/l	0,014	0,046	0,024	0,016	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	0,49	0,06	0,17	0,03	0,051	0,040	0,063
Sulfat	mg/l	4850	4290	4030	4000	3940	3810	3690
Chlorid	mg/l	212	175	152	164	146	142	146
Fluorid	mg/l	0,26		. 72				
Sulfid	mg/l	<0,1	0,18	0,12	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	477	388	419	453	457	456	438
Magnesium (Mg)	mg/l	194	192	172	203	194	197	190
Natrium (Na)	mg/l	368	189	133	113	109	96,8	90,3
Kalium (K)	mg/l	20,9	32,9	30,2	32,3	28,0	20,4	27,2
Eisen (Fe), gesamt	mg/l	1500	32,3	50,2	32,0	20,0	_∪,⊤	-1,2
Eisen (Fe) gelöst	mg/l	1360	1370	1260	1290	1190	1070	961
Eisen (2+)	mg/l	1378	1370	1210	1250	1160	1070	948
Mangan (Mn) gesamt	mg/l	24,7	1000	1210	1200	1 100	1000	U-TU
Mangan (Mn) gelöst	mg/l	4,1	20,6	25,4	25,9	26,4	33,7	25,4
Silizium (Si)	mg/l	12	20,0	20,4	25,8	20,4	55,1	20,4
Aluminium (AI)		0,61						
. ,	mg/l	0,01						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ			00.4	FC 4	F0.0	F7 4	FF ^	40.0
Summe Kationen	mmoleq/l		63,4	56,4	59,6	57,4	55,0	49,3
Summe Anionen	mmoleq/l		65,3	62,4	58,9	59,6	60,5	58,4
Ionenbilanz-Fehler	%	-1,3	-1,4	-5,0	0,6	-1,5	-4,8	-8,5
CSB	mg/l	209						

LMBV VT3 Seite 9 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61795

Markscheidernummer		61795	61795	61795	61795	61795
Messstellenname		M1-5	M1-5	M1-5	M1-5	M1-5
Grundwasserleiterzuordnur	l	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	I	22.07.09	02.11.09	18.05.10	28.02.12	
Vor-Ort-Parameter		22.01.03	02.11.09	10.00.10	20.02.12	20.00.10
Grundwassertemperatur	°C	18,5	11,7	13,4	9,6	20,5
pH-Wert		5,5	5,3	5,6	6,0	5,3
elektr. Leitfähigkeit	μS/cm	4830	4880	4750	4420	4280
Sauerstoff	mg/l	0,7	0,5	0,6	1,5	2,6
Redoxspannung	mV	11	-7	11	26	325
KB 4,3 (bei pH<4,3)	mmol/l	11	-1	1.1	20	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	3,8	2,8	4,1	6,1	6,5
KB 8,2 (bei pH<8,2)	mmol/l	30,5	45,2	35,4	20,4	15,9
KS 8,2 (bei pH>8,2)	mmol/l	30,3	75,2	55,4	20,4	< 0,05
Laboranalytik	11111101/1					10,00
pH-Wert		5,5	5,5	5,7	5,9	5,8
elektr. Leitfähigkeit	μS/cm	4750	4690	4530	4500	4390
Gesamttrockenrückstand	mg/l	6300	6250	5360	5600	7030
Filtrattrockenrückstand	mg/l	6100	5780	4980	5410	
Karbonathärte	mgCaO/l	106,6	78,5	115	171	183,1
Gesamthärte	mmol/l	19,3	19,6	18,9	21,0	21,2
ges. wirksame Acidität	mmol/l	10,0	13,0	10,5	21,0	15,8
TIC	mg/l	220	220	220	220	75
DOC	mg/l	4,3	4,8	4,1	6,9	19
Ammonium (N)	mg/l	5,19	4,53	2,13	3,56	3,3
Nitrat (N)	mg/l	0,1	0,3	0,1	< 0,05	< 0,1
Nitrit (N)	mg/l	0,1	0,0	0,1	1 0,00	٠ ٥, ١
Phosphat-ortho (P)	mg/l	<0,007	0,01	0,02	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,040	0,081	0,080	0,120	0,059
Sulfat	mg/l	3570	3490	3460	3230	2940
Chlorid	mg/l	130	136	126	78,7	99,9
Fluorid	mg/l				. 0,.	00,0
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	461	480	460	560	525
Magnesium (Mg)	mg/l	190	190	180	170	196
Natrium (Na)	mg/l	79,8	86	84	63	65,5
Kalium (K)	mg/l	18,7	19,0	16,0	13,0	14,0
Eisen (Fe), gesamt	mg/l	-,-	,	-,-	-,-	-,-
Eisen (Fe) gelöst	mg/l	1090	990	870	780	820
Eisen (2+)	mg/l	931	778	842	728	820
Mangan (Mn) gesamt	mg/l		-		-	
Mangan (Mn) gelöst	mg/l	27,8	25	24	31	27
Silizium (Si)	mg/l	,-	-			
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ						
Summe Kationen	mmoleq/l	52,3	52,5	48,0	48,9	76,1
Summe Anionen	mmoleq/l	53,8	53,9	53,9	52,2	70,6
Ionenbilanz-Fehler	%	-1,4	-1,4	-5,8	-3,3	3,8
CSB	mg/l					
	-					

LMBV VT3 Seite 10 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61801

Markesstellename	Markscheidernummer		61801	61801	61801	61801	61801	61801	61801
Grundwasserleiterzuordnung									
Probenalmedatum		1							
Vor-Ort-Parameter		ig I							
Grundwassertemperatur °C 13.6 11.3 12.8 15.5 12.0 11.2 14.7 - 5.3 5.4 5.3 5.2 5.3 5.5 5.6 elektr. Leitfähigkeit μβ/cm 6200 6010 6370 6200 6050 6180 6190 Sauerstoff mg/l 1.6 1.4 3.0 1.0 0.8 0.6 1.1 REd 4.3 (bei pH<4.3) mmol/l 1.9 1.9 2.4 1.6 1.9 2.4 3.7 KB 8.3 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 28.5 26.3 25.5 25.1 35.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 5.3 5.2 5.3 5.4 53.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 5.3 5.2 5.3 5.4 53.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 5.3 5.2 5.3 5.4 53.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 36.5 5.3 5.2 5.3 5.4 53.2 KS 8.2 (bei pH<8.2) mmol/l 46.5 46.5 47.0 44.9 53.3 67.3 67.3 KS 8.2 (bei pH<8.2) mmol/l 40.0 40.0 44.9 44.9 45.3 KS 8.2 (bei pH<8.2) mmol/l 40.0 40.0 44.9 44.9 45.3 KS 8.2 (bei pH<8.2) mmol/l 40.0 40.0 40.0 40.0 KS 8.2 (bei pH<8.2) mmol/l 40.0 40.0 40.0 40.0 KS 8.2 (bei pH<8.2) mmol/l			17.09.07	09.01.00	23.04.00	23.07.00	04.11.00	10.02.09	21.04.09
pH-Wert elektr. Leitfähigkeit µS/cm 6200 6010 6370 6200 6050 6180 6190 6190 6300 6300 6050 6050 6180 6190 6190 6180 6180 6190 6180 6180 6190 6180 6180 6190 6180 6180 6180 6180 6180 6180 6180 618		°C	13.6	11 2	12 Q	15.5	12.0	11.2	14.7
Elektr. Lelifahigkeit	•	C							,
Sauerstoff mg/l 1,6 1,4 3,0 1,0 0,8 0,6 1,1 Redoxspannung mV 220 110 140 -6 51 101 45 KB 4,3 (bei pH>4,3) mmol/l 1,9 1,9 2,4 1,6 1,9 2,4 3,7 KS 8,2 (bei pH>8,2) mmol/l 46,5 36,5 28,5 26,3 25,5 25,1 35,2 KS 8,2 (bei pH>8,2) mmol/l 46,5 36,5 28,5 26,3 25,5 25,1 35,2 Laboranalytik pH-Wert pH-Wert 6320 5820 6390 6200 6130 6180 6210 Gesamtrockenrückstand mg/l 8400 8330 7840 7770 7520 7300 7350 Karbonatharte mg/l 23,1 20,4 22,5 22,7 72,2 92,2 21,7 ges. wirksame Acidität mg/l 26,3 149 136 216 230 244	•	uS/om							
Redoxspannung									
KB 4,3 (bei pH+4,3)									
KS 4.3 (bei pH+8,2) mmol/l 46,5 36,5 28,5 26,3 25,5 25,1 35,2			220	110	140	-0	31	101	45
KB 8.2 (bei pH-8.2)	· · · · · · · · · · · · · · · · · · ·		1.0	1.0	2.4	1.6	1.0	2.4	2.7
KS 8.2 (Dei pH=8,2)									
Laboranalytik			40,5	30,3	20,3	20,3	25,5	25,1	35,2
pH-Wert		1111101/1							
Elektr. Leitfähigkeit		1	E 4	E E	<i>E</i> 2	F 2	F 2	F 1	F 2
Gesamttrockenrückstand mg/l 8400 8330 7840 7770 7630 7540 736	·	uC/am							
Filtrattrockenrückstand mg/l 8400 7810 7660 7760 7520 7300 7350 Karbonathärte mgCaO/l 54,32 61,7 44,9 53,3 67,3 103,7 ges. wirksame Acidität mmol/l 50,2 TiC mg/l 0,83 6,2 11 5,1 5,9 6,5 5,8 Ammonium (N) mg/l 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/l <0,23 0,3 0,5 <0,002 0,04 0,03 0,04 Nitrit (N) mg/l 0,015 mg/l 0,04 0,04 0,03 0,061 0,040 0,019 0,031 Nitrit (N) mg/l 4720 4320 4630 4620 4290 4420 4250 Sulfid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,14 40,08 0,03 0,061 0,040 0,019 0,031 Nitrit (Magnesium (Mg) mg/l <0,1 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <	<u> </u>								
Karbonathärte mgCaO/I 54,32 61,7 44,9 53,3 67,3 103,7 Gesamthärte mmol/I 23,1 20,4 22,5 22,7 22,9 22,6 21,7 ges. wirksame Acidität mmol/I 50,2 1 20 22,7 22,9 22,6 21,7 TIC mg/I 263 149 136 216 230 244 250 DOC mg/I 0,83 6,2 11 5,1 5,9 6,5 5,8 Ammonium (N) mg/I 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/I <0,23									
Gesamthärte mmol/l 23,1 20,4 22,5 22,7 22,9 22,6 21,7 ges. wirksame Acidität mmol/l 50,2			ŏ4UU						
ges. wirksame Acidität mmol/l 50,2 mg/l 263 149 136 216 230 244 250 DOC mg/l 0,83 6,2 11 5,1 5,9 6,5 5,8 Ammonium (N) mg/l 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/l 40,23 0,3 0,5 <0,02			00.4						
TIC mg/l 263 149 136 216 230 244 250 DOC mg/l 0,83 6,2 11 5,1 5,9 6,5 5,8 Ammonium (N) mg/l 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/l <0,23 0,3 0,5 <0,02 0,04 0,03 0,04 Nitrit (N) mg/l <0,015 Phosphor gesamt (P) mg/l 0,014 0,062 <0,007 0,026 0,03 <0,007 0,03 Phosphor gesamt (P) mg/l 0,4 0,08 0,03 0,061 0,040 0,019 0,031 Sulfat mg/l 4720 4320 4630 4620 4290 4420 4250 Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,02 Sulfid mg/l <0,01 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04 <0,04				∠∪,4	22,5	22,1	22,9	22,6	21,7
DOC mg/l 0,83 6,2 11 5,1 5,9 6,5 5,8 Ammonium (N) mg/l 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/l <0,23	<u> </u>			440	400	040	000	044	050
Ammonium (N) mg/l 1,45 3,81 1,67 2,61 2,98 2,38 1,89 Nitrat (N) mg/l <0,23		•							
Nitrat (N) mg/l <0,23 0,3 0,5 <0,02 0,04 0,03 0,04 Nitrit (N) mg/l <0,015									
Nitrit (N) mg/l < 0,015 0,062 < 0,007 0,026 0,03 < 0,007 0,03 Phosphor gesamt (P) mg/l 0,04 0,080 0,030 0,061 0,040 0,019 0,031 Sulfat mg/l 4720 4320 4630 4620 4290 4420 4250 Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,2	` '								
Phosphat-ortho (P) mg/l 0,014 0,062 <0,007 0,026 0,03 <0,007 0,03 Phosphor gesamt (P) mg/l 0,4 0,08 0,03 0,061 0,040 0,019 0,031 Sulfat mg/l 4720 4320 4630 4620 4290 4420 4250 Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,2				0,3	0,5	<0,02	0,04	0,03	0,04
Phosphor gesamt (P) mg/l 0,4 0,08 0,03 0,061 0,040 0,019 0,031 Sulfat mg/l 4720 4320 4630 4620 4290 4420 4250 Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,2				0.000	0.00=	0.000	0.00	0.00=	0.00
Sulfat mg/l 4720 4320 4630 4620 4290 4420 4250 Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,2									
Chlorid mg/l 350 379 393 409 395 402 394 Fluorid mg/l <0,2									
Fluorid mg/l <0,2 Sulfid mg/l <0,1									
Sulfid mg/l < 0,1 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,04 < 0,00 < 0,05 < 0,00 < 0,				379	393	409	395	402	394
Calcium (Ca) mg/l 512 405 457 460 478 478 430 Magnesium (Mg) mg/l 251 251 269 273 367 260 266 Natrium (Na) mg/l 154 120 309 218 266 271 311 Kalium (K) mg/l 17,5 30,1 27,6 29 26,0 18,1 24,6 Eisen (Fe), gesamt mg/l 1700									
Magnesium (Mg) mg/l 251 251 269 273 367 260 266 Natrium (Na) mg/l 154 120 309 218 266 271 311 Kalium (K) mg/l 17,5 30,1 27,6 29 26,0 18,1 24,6 Eisen (Fe), gesamt mg/l 1700 1700 1700 1700 18,1 24,6 Eisen (Fe) gelöst mg/l 1650 1520 1270 1440 1210 1190 1300 Eisen (2+) mg/l 1440 1410 1250 1360 1208 1190 1140 Mangan (Mn) gesamt mg/l 27,4								,	
Natrium (Na) mg/l 154 120 309 218 266 271 311 Kalium (K) mg/l 17,5 30,1 27,6 29 26,0 18,1 24,6 Eisen (Fe), gesamt mg/l 1700 1270 1440 1210 1190 1300 Eisen (Fe) gelöst mg/l 1650 1520 1270 1440 1210 1190 1300 Eisen (2+) mg/l 1440 1410 1250 1360 1208 1190 1140 Mangan (Mn) gesamt mg/l 27,4 24 24,4 26,7 25,8 23,1 26,5 Silizium (Si) mg/l 9,27 7,09 7,09 7,09 7,09 7,09 7,09 7,09 7,09 7,09 7,09 7,09 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,	. ,								
Kalium (K) mg/l 17,5 30,1 27,6 29 26,0 18,1 24,6 Eisen (Fe), gesamt mg/l 1700 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Eisen (Fe), gesamt mg/l 1700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Eisen (Fe) gelöst mg/l 1650 1520 1270 1440 1210 1190 1300 Eisen (2+) mg/l 1440 1410 1250 1360 1208 1190 1140 Mangan (Mn) gesamt mg/l 27,4 Mangan (Mn) gelöst mg/l 24 24,4 26,7 25,8 23,1 26,5 Silizium (Si) mg/l 9,27 7,09 Aluminium (Al) mg/l 0,48 1,68 Arsen (As) mg/l 0,48 0,009 Blei (Pb) mg/l 0,009 </td <td></td> <td></td> <td></td> <td>30,1</td> <td>27,6</td> <td>29</td> <td>26,0</td> <td>18,1</td> <td>24,6</td>				30,1	27,6	29	26,0	18,1	24,6
Eisen (2+) mg/l 1440 1410 1250 1360 1208 1190 1140									
Mangan (Mn) gesamt mg/l 27,4 24 24,4 26,7 25,8 23,1 26,5 Silizium (Si) mg/l 9,27 7,09 7,00 7,0	· , ,								
Mangan (Mn) gelöst mg/l 24 24,4 26,7 25,8 23,1 26,5 Silizium (Si) mg/l 9,27 7,09 7,00 7,0				1410	1250	1360	1208	1190	1140
Silizium (Si) mg/l 9,27 7,09 Aluminium (Al) mg/l 0,48 1,68 Arsen (As) mg/l 0,009 0,009 Blei (Pb) mg/l 0,037 0,001 Cadmium (Cd) mg/l 0,02 0,02 Kupfer (Cu) mg/l 0,24 0,24 Nickel (Ni) mg/l 0,24 0,24 Zink (Zn) mg/l 1,65 0,65 IONENBILANZ mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3			27,4						
Aluminium (Al) mg/l 0,48 1,68 Arsen (As) mg/l 0,009 Blei (Pb) mg/l 0,037 Cadmium (Cd) mg/l <0,001				24	24,4	26,7		23,1	26,5
Arsen (As) mg/l 0,009 Blei (Pb) mg/l 0,037 Cadmium (Cd) mg/l <0,001	` '								
Blei (Pb) mg/l 0,037 Cadmium (Cd) mg/l <0,001 <0,001 Chrom (Cr) ges. mg/l 0,02 Kupfer (Cu) mg/l <0,01 <0,01 Kupfer (Cu) mg/l 0,24 <0,01 Mickel (Ni) mg/l 0,24 <0,01 Mickel (Ni) mg/l 0,24 <0,01 Mickel (Ni) mg/l 0,24 <0,01 Mickel (Ni) Mg/l 0,24 Mickel (Ni) Mg/l Mickel (Ni) Mg/l 0,24 Mickel (Ni) Mg/l	` '		0,48						
Cadmium (Cd) mg/l <0,001 Chrom (Cr) ges. mg/l 0,02 Kupfer (Cu) mg/l <0,01	` ′								
Chrom (Cr) ges. mg/l 0,02 Kupfer (Cu) mg/l <0,01							-		
Kupfer (Cu) mg/l <0,01 Nickel (Ni) mg/l 0,24 Zink (Zn) mg/l 1,65 IONENBILANZ Summe Kationen mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3									
Nickel (Ni) mg/l 0,24 Zink (Zn) mg/l 1,65 IONENBILANZ 5 1,65 Summe Kationen mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3									
Zink (Zn) mg/l 1,65 IONENBILANZ 5 1,65 Summe Kationen mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3	<u> </u>								
IONENBILANZ Summe Kationen mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3	. ,								
Summe Kationen mmoleq/l 67,5 70,6 70,5 75,9 67,8 69,8 Summe Anionen mmoleq/l 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3		mg/l					1,65		
Summe Anionen mmoleq/I 69,7 74,5 73,5 68,1 73,7 71,7 Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3									
Ionenbilanz-Fehler % 1,6 -1,6 -2,7 -2,1 5,4 -4,1 -1,3									
CSB mg/l 228				-1,6	-2,7	-2,1	5,4	-4,1	-1,3
	CSB	mg/l	228						

LMBV VT3 Seite 11 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61801

Analytik: Eurofins-AUA GmbH, Ndl. Freiberg Markscheidernummer 61801 61801 61801 61801 61801 Messstellenname M2-1 M2-1 M2-1 M2-1 M2-1 Grundwasserleiterzuordnung Ki Ki Ki Ki Ki 21.07.09 03.11.09 25.05.10 27.02.12 26.08.15 Probenahmedatum Vor-Ort-Parameter °C 10.3 15.4 10.2 Grundwassertemperatur 15.7 13.3 pH-Wert 5.3 5.8 5.6 5.8 5,6 elektr. Leitfähigkeit 6440 μS/cm 6490 5840 6260 5680 Sauerstoff mg/l 0,7 0,5 0,7 0,5 2,2 mV 22 Redoxspannung 53 308 59 8 KB 4,3 (bei pH<4,3) mmol/l < 0.05 KS 4,3 (bei pH>4,3) mmol/l 3,0 3,3 5.3 4.2 0,7 KB 8,2 (bei pH<8,2) mmol/l 35,2 42,1 25,1 36.7 22,8 mmol/l < 0,05 KS 8,2 (bei pH>8,2) Laboranalytik pH-Wert 5,3 5,5 5.5 5.5 5,1 elektr. Leitfähigkeit μS/cm 6500 6400 6160 6320 5840 Gesamttrockenrückstand mg/l 7320 7800 7940 8240 Filtrattrockenrückstand mg/l 7300 7300 7440 7250 mgCaO/l 92,5 148.6 117.8 19.63 Karbonathärte 84.1 Gesamthärte mmol/l 21,8 26,2 21,5 23.0 ges. wirksame Acidität mmol/l 52.0 TIC mg/l 190 320 310 300 38 DOC 8,2 6,8 mg/l 5,7 7,7 Ammonium (N) 3,00 2,05 1,80 7,80 mg/l 1,75 Nitrat (N) 0,98 < 0,05 mg/l 0,1 0,2 < 0,1 Nitrit (N) mg/l Phosphat-ortho (P) 0,03 <0,007 < 0.005 mg/l 0,01 0,01 Phosphor gesamt (P) mg/l 0,037 0,048 0,070 0,290 0,026 Sulfat 4510 4380 3550 4200 5660 mg/l Chlorid 429 394 295 265 168 mg/l Fluorid mg/l < 0.04 < 0.04 < 0.04 < 0.04 Sulfid mg/l 460 Calcium (Ca) mg/l 481 580 510 464 230 220 250 250 355 Magnesium (Mg) mg/l 318 500 350 130 57,3 Natrium (Na) mg/l Kalium (K) mq/l 28,3 16,0 15,0 11,0 27,1 Eisen (Fe), gesamt mg/l 1210 1200 1010 1100 1800 Eisen (Fe) gelöst mg/l Eisen (2+) 1090 895 1010 1100 1700 mg/l Mangan (Mn) gesamt mg/l 30 22 Mangan (Mn) gelöst mg/l 25,4 23 30 Silizium (Si) mg/l Aluminium (AI) mg/l Arsen (As) mg/l Blei (Pb) mg/l Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ 67,9 Summe Kationen mmoleg/l 66,9 77,1 60.0 124,4 75,3 Summe Anionen mmoleq/l 79,0 59.2 70,0 123,3 Ionenbilanz-Fehler % -5,9 -1,26 6,9 -7,7 0,5 CSB mg/l

LMBV VT3 Seite 12 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61802

Markscheidernummer		61802	61802	61802	61802	61802	61802	61802
Messstellenname		M2-2						
Grundwasserleiterzuordnur	ng	Ki						
Probenahmedatum		17.09.07	10.01.08	23.04.08	23.07.08	04.11.08	10.02.09	21.04.09
Vor-Ort-Parameter	•							
Grundwassertemperatur	°C	13,6	10,9	13,3	16,2	12,0	11,2	14,2
pH-Wert	-	5,3	4,2	4,2	4,2	4,2	4,5	4,4
elektr. Leitfähigkeit	μS/cm	6900	8960	8600	9130	6030	10360	10070
Sauerstoff	mg/l	1,5	1,6	3,2	0,8	1,6	0,9	1,6
Redoxspannung	mV	240	193	208	30	145	154	176
KB 4,3 (bei pH<4,3)	mmol/l		1,75	0,1			-	
KS 4,3 (bei pH>4,3)	mmol/l	2,0					0,3	k. A.
KB 8,2 (bei pH<8,2)	mmol/l	58,7	109,0	>50	100,9	80,9	78,2	> 150
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,4	4,1	4,1	4,0	4,0	4,1	3,9
elektr. Leitfähigkeit	μS/cm	7120	8920	8790	9160	10200	10420	10100
Gesamttrockenrückstand	mg/l	10000	16600	16000	16300	18800	20000	19200
Filtrattrockenrückstand	mg/l	10000	16000	14700	16200	18500	19400	18800
Karbonathärte	mgCaO/I						8,4	
Gesamthärte	mmol/l	24	22,3	21	20,7	21,3	20,1	19,4
ges. wirksame Acidität	mmol/l	66,2						
TIC	mg/l	141	86	87	138	148	161	160
DOC	mg/l	1	8,1	5,9	5,9	6,2	7,4	6,7
Ammonium (N)	mg/l	2,02	9,22	8,58	8,61	9,68	7,09	6,71
Nitrat (N)	mg/l	<0,23	0,4	0,4	<0,02	0,09	0,08	0,1
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,018	0,13	<0,007	0,098	0,03	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,66	0,08	0,081	0,19	0,100	0,057	0,090
Sulfat	mg/l	5840	9380	9470	9870	11000	12200	13300
Chlorid	mg/l	279	123	125	103	101	94,1	100
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	547	458	409	401	412	391	377
Magnesium (Mg)	mg/l	252	263	263	259	269	251	242
Natrium (Na)	mg/l	196	57,6	45,3	53,2	55,2	73,7	45
Kalium (K)	mg/l	18,4	56,2	58,4	58,1	58,7	36,1	33,2
Eisen (Fe), gesamt	mg/l	2290						
Eisen (Fe) gelöst	mg/l	2220	4310	3580	4450	4880	5180	5110
Eisen (2+)	mg/l	1881	3640	3500	3830	4500	4430	4060
Mangan (Mn) gesamt	mg/l	35,2	40.0		20.0	44.0	45.0	44.4
Mangan (Mn) gelöst	mg/l	0.00	42,3	38,5	39,6	44,3	45,3	44,4
Silizium (Si)	mg/l	8,02	6,23	5	4,7	4,6	6,0	6,8
Aluminium (Al)	mg/l	0,57	163	150	191	226	1,9	209
Arsen (As)	mg/l		<0,005	<0,005	<0,005	<0,005	0,021	< 0,005
Blei (Pb)	mg/l		<0,005	0,14	0,185	0,172	0,183	0,178
Cadmium (Cd)	mg/l		0,008	<0,001	<0,001	0,002	< 0,001	0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	0,05	0,05	0,05	0,05
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,01	0,01	0,02	0,02
Nickel (Ni)	mg/l		1,65	1,17	1,68	2,00	2,37	2,23
Zink (Zn)	mg/l		6,95	4,76	5,16	4,58	5,36	5,93
IONENBILANZ	mmeles/I		120.0	100.0	125.7	146.0	126.0	140.4
Summe Kationen	mmoleq/l		139,2	109,2	135,7	146,0	136,9	140,4
Summe Anionen	mmoleq/l %	2.4	116,9	117,4	119,1	130,2	165,6	175,8
lonenbilanz-Fehler		2,4	8,7	-3,6	6,5	5,7	-9,5	-11,2
CSB	mg/l	300						

LMBV VT3 Seite 13 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61802

Massatellenname	Markscheidernummer		61802	61802	61802	61802	61802
Grundwasserleiterzuordnung Ki Ki Ki Ki Ki Probenahmedatum 21.07.09 03.11.09 25.05.10 27.02.12 26.08.15							
Probenahmedatum							
Vor-Ort-Parameter Grundwasserlemperatur of the parameter of the pa		iy I					
Grundwassertemperatur			21.07.09	03.11.09	25.05.10	27.02.12	20.06.15
PH-Wert		°C	15.7	10.6	15.0	0.5	12.0
Elektr. Leitfähigkeit	•	U					
Sauerstoff		- 0/					
Redoxspannung		•					
KB 4,3 (bei pH-4,3)							
KS 4,3 (bei pH>4,3)				169			
KB 8,2 (bei pH<8,2) mmol/l 120,0 140,0 101,9 191,5 132,0 KS 8,2 (bei pH>8,2) mmol/l			0,10		2,60	6,10	
KS 8,2 (bei pH>8,2) mmol/l			-				
Laboranalytik pH-Wert			120,0	140,0	101,9	191,5	
DH-Wert DH-W		mmol/l					< 0,05
Elektr. Leitfähigkeit							
Gesamttrockenrückstand	L*						
Filtrattrockenrückstand mg/l 18000 18500 18740 20500	· · · · · · · · · · · · · · · · · · ·	•					9470
Rarbonathärte							
Gesamthärte	Filtrattrockenrückstand	mg/l	18000	18500	18740	20500	
ges. wirksame Acidität mmol/I 120 190 170 160 47 DOC mg/I 5,6 8,0 6,5 9,2 9,5 Ammonium (N) mg/I 5,6 8,0 6,5 9,2 9,5 Ammonium (N) mg/I 0,3 0,2 0,94 <0,05	Karbonathärte	mgCaO/I			n.b.		-
TIC mg/l 120 190 170 160 47 DOC mg/l 5,6 8,0 6,5 9,2 9,5 Ammonium (N) mg/l 7,82 2,63 8,46 10,2 12 Nitrat (N) mg/l 0,3 0,2 0,94 < 0,05	Gesamthärte	mmol/l	18,3	22,9	23,7	20,1	19,5
DOC	ges. wirksame Acidität	mmol/l					193,0
Ammonium (N) mg/l 7,82 2,63 8,46 10,2 12 Nitrat (N) mg/l 0,3 0,2 0,94 < 0,05	TIC	mg/l	120	190	170	160	47
Ammonium (N) mg/l 7,82 2,63 8,46 10,2 12 Nitrat (N) mg/l 0,3 0,2 0,94 < 0,05	DOC		5,6	8,0	6,5	9,2	9,5
Nitrat (N)	Ammonium (N)					·	
Nitrit (N)	` '						
Phosphat-ortho (P) mg/l <0,007 <0,007 0,08 0,08 0,04 Phosphor gesamt (P) mg/l 0,061 0,061 0,220 0,280 0,052 Sulfat mg/l 11100 11410 11300 12600 12200 Chlorid mg/l 123 111 128 73,3 81,2 Fluorid mg/l 20,04 <0,04			-,-	-,	- , -	-,	-,
Phosphor gesamt (P)	. ,		<0.007	<0.007	0.08	0.08	0.04
Sulfat mg/l 11100 11410 11300 12600 12200 Chlorid mg/l 123 111 128 73,3 81,2 Fluorid mg/l 0,04 0,04 0,04 0,04 0,04 0,03 Sulfid mg/l 383 540 470 460 439 Magnesium (Mg) mg/l 383 540 470 460 439 Magnesium (Mg) mg/l 212 230 290 210 208 Natrium (Na) mg/l 30,5 72 49 24 54 Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (Fe) gelöst mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l	. ,			•			
Chlorid mg/l 123 111 128 73,3 81,2 Fluorid mg/l 0,04 < 0,04							
Fluorid							
Sulfid mg/l < 0,04 < 0,04 < 0,04 < 0,04 < 0,03 Calcium (Ca) mg/l 383 540 470 460 439 Magnesium (Mg) mg/l 212 230 290 210 208 Natrium (Na) mg/l 30,5 72 49 24 54 Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (Fe) gelöst mg/l 4570 4360 3870 4490 4000 Eisen (Fe) gelöst mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l			120		120	7 0,0	01,2
Calcium (Ca) mg/l 383 540 470 460 439 Magnesium (Mg) mg/l 212 230 290 210 208 Natrium (Na) mg/l 30,5 72 49 24 54 Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (Fe) gelöst mg/l 4570 4360 3870 4490 4000 Eisen (Z+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l <td< td=""><td></td><td></td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.04</td><td>< 0.03</td></td<>			< 0.04	< 0.04	< 0.04	< 0.04	< 0.03
Magnesium (Mg) mg/l 212 230 290 210 208 Natrium (Na) mg/l 30,5 72 49 24 54 Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gelöst mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 <0,005					,		
Natrium (Na) mg/l 30,5 72 49 24 54 Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gelöst mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 <0,001	` '						
Kalium (K) mg/l 57,7 32,0 30,0 28,0 38,5 Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 <0,005	1 01						
Eisen (Fe), gesamt mg/l 4570 4360 3870 4490 4000 Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 <0,005							
Eisen (Fe) gelöst mg/l 4570 4360 3870 4490 4000 Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l - - - - - Mangan (Mn) gelöst mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005			51,1	32,0	30,0	20,0	30,3
Eisen (2+) mg/l 4140 3360 3560 4490 3800 Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005			4570	4360	3970	4400	4000
Mangan (Mn) gesamt mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005	` , ,						
Mangan (Mn) gelöst mg/l 42,7 50 40 38 32 Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005			4140	3300	3300	4490	3000
Silizium (Si) mg/l 4,62 6,2 6,4 14 7,2 Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005			40.7	FO	40	20	22
Aluminium (Al) mg/l 169 260 190 370 280 Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005	<u> </u>				_		
Arsen (As) mg/l 0,006 0,01 0,011 0,016 0,033 Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005							
Blei (Pb) mg/l 0,25 0,01 0,008 0,006 < 0,005 Cadmium (Cd) mg/l < 0,001	` ,						
Cadmium (Cd) mg/l < 0,001 0,0002 0,0002 0,0003 < 0,001 Chrom (Cr) ges. mg/l 0,04 0,01 0,008 0,021 0,011 Kupfer (Cu) mg/l 0,02 0,001 < 0,001	• •						
Chrom (Cr) ges. mg/l 0,04 0,01 0,008 0,021 0,011 Kupfer (Cu) mg/l 0,02 0,001 < 0,001	, ,						
Kupfer (Cu) mg/l 0,02 0,001 < 0,001 < 0,001 < 0,005 Nickel (Ni) mg/l 2,11 2,4 2,5 3,5 2 Zink (Zn) mg/l 5,24 6,2 6 6,8 6,6 IONENBILANZ Summe Kationen mmoleq/l 131,5 140,2 114,5 132,5 222,5 Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1			·				
Nickel (Ni) mg/l 2,11 2,4 2,5 3,5 2 Zink (Zn) mg/l 5,24 6,2 6 6,8 6,6 IONENBILANZ Summe Kationen mmoleq/l 131,5 140,2 114,5 132,5 222,5 Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1	` ' ' •						
Zink (Zn) mg/l 5,24 6,2 6 6,8 6,6 IONENBILANZ Summe Kationen mmoleq/l 131,5 140,2 114,5 132,5 222,5 Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1					·		
IONENBILANZ Summe Kationen mmoleq/l 131,5 140,2 114,5 132,5 222,5 Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1	` '						
Summe Kationen mmoleq/l 131,5 140,2 114,5 132,5 222,5 Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1		mg/l	5,24	6,2	6	6,8	6,6
Summe Anionen mmoleq/l 134,9 148,5 141,3 151,0 256,3 Ionenbilanz-Fehler % -1,3 -2,9 -10,5 -6,5 -7,1							
Ionenbilanz-Fehler							
CSB mg/l		%	-1,3	-2,9	-10,5	-6,5	-7,1
	CSB	mg/l					

LMBV VT3 Seite 14 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61803

Markscheidernummer		61803	61803	61803	61803	61803	61803	61803
Messstellenname		M2-3	M2-3	M2-3	M2-3	M2-3	M2-3	M2-3
Grundwasserleiterzuordnu	na	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		17.09.07			23.07.08		10.02.09	
Vor-Ort-Parameter								
Grundwassertemperatur	°C	13,9	10,9	14	16,8	11,9	11,1	15,9
pH-Wert	-	5,3	5,4	5,3	5,4	5,5	5,6	5,6
elektr. Leitfähigkeit	μS/cm	6800	6690	6560	6520	5670	6330	6280
Sauerstoff	mg/l	1,4	1,4	2,6	0,9	1,1	0,6	1,4
Redoxspannung	mV	240	148	100	-11	76	163	75
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	2,3	1,7	2,3	1,8	2,7	2,6	2,7
KB 8,2 (bei pH<8,2)	mmol/l	49,5	65,0	34,9	42,8	28,8	29,2	44,1
KS 8,2 (bei pH>8,2)	mmol/l		·	·	·	·	·	·
Laboranalytik	•							
pH-Wert		5,4	5,2	5,2	5,1	5,3	5,3	5,2
elektr. Leitfähigkeit	μS/cm	6960	6330	6510	6490	6430	6320	6220
Gesamttrockenrückstand	mg/l	12000	9370	9160	9010	8910	8900	8740
Filtrattrockenrückstand	mg/l	9500	9310	8810	8940	8090	8860	8630
Karbonathärte	mgCaO/l		47,04	56,1	50,5	75,7	72,9	75,7
Gesamthärte	mmol/l	21,9	20,6	23,3	22,3	22,0	21,5	21,1
ges. wirksame Acidität	mmol/l	59,9						
TIC	mg/l	131	139	128	189	170	137	230
DOC	mg/l	1,2	8,9	4	4,5	3,7	3,5	3,6
Ammonium (N)	mg/l	1,37	3,1	2,62	3,6	3,98	2,46	2,74
Nitrat (N)	mg/l	<0,23	0,4	1,1	<0,02	0,03	0,04	0,05
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,014	0,075	<0,007	0,039	0,03	<0,007	0,02
Phosphor gesamt (P)	mg/l	0,64	0,12	0,035	0,49	0,061	0,057	0,040
Sulfat	mg/l	5710	4840	5070	5180	5070	5330	5250
Chlorid	mg/l	324	314	374	307	283	274	252
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	476	422	469	449	463	445	432
Magnesium (Mg)	mg/l	244	245	283	269	255	253	250
Natrium (Na)	mg/l	238	116	120	92,4	106	119	117
Kalium (K)	mg/l	16,2	29,3	30,1	30,5	28,2	17,8	30,5
Eisen (Fe), gesamt	mg/l	2090						
Eisen (Fe) gelöst	mg/l	1970	2220	1940	1980	1790	1870	1820
Eisen (2+)	mg/l	1744	1960	1890	1900	1790	1740	1650
Mangan (Mn) gesamt	mg/l	38						
Mangan (Mn) gelöst	mg/l		37	38,9	35,9	36,2	36,1	35,1
Silizium (Si)	mg/l	8,74				6,76		
Aluminium (AI)	mg/l	0,24				2,00		
Arsen (As)	mg/l					0,019		
Blei (Pb)	mg/l					0,084		
Cadmium (Cd)	mg/l					0,001		
Chrom (Cr) ges.	mg/l					0,03		
Kupfer (Cu)	mg/l					<0,01		
Nickel (Ni)	mg/l					0,24		
Zink (Zn)	mg/l					1,29		
IONENBILANZ								
Summe Kationen	mmoleq/l		85,0	80,3	76,5	74,4	73,9	70,2
Summe Anionen	mmoleq/l		72,8	75,3	75,4	75,6	80,8	79,5
Ionenbilanz-Fehler	%	-1,5	7,7	3,2	0,7	-0,8	-4,4	-6,2
CSB	mg/l	275						

LMBV VT3 Seite 15 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61803

Markscheidernummer	I	61803	61803	61803	61803	61803
Messstellenname		M2-3	M2-3	M2-3	M2-3	M2-3
Grundwasserleiterzuordnur	20	Ki	Ki	Ki	Ki	Ki
	iy I	21.07.09	03.11.09	25.05.10	27.02.12	26.08.15
Probenahmedatum		21.07.09	03.11.09	25.05.10	21.02.12	20.06.15
Vor-Ort-Parameter	°C	16.6	0.0	1F.C	0.0	10 E
Grundwassertemperatur	U	16,6	9,8	15,6	9,2	13,5
pH-Wert	- 0/	5,2	5,3	5,3	5,7	5,7
elektr. Leitfähigkeit	μS/cm	6220	6330	6150	6270	6950
Sauerstoff	mg/l	0,8	0,6	0,8	0,9	1,5
Redoxspannung	mV	99	45	93	104	285
KB 4,3 (bei pH<4,3)	mmol/l	-				< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	1,9	2,2	1,9	2,8	0,8
KB 8,2 (bei pH<8,2)	mmol/l	43,2	46,9	39,8	70,3	24,5
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik	T					
pH-Wert		5,1	5,3	5,1	5,5	4,8
elektr. Leitfähigkeit	μS/cm	6140	6320	6180	6510	7030
Gesamttrockenrückstand	mg/l	8580	8880	8880	10000	
Filtrattrockenrückstand	mg/l	8270	8260	8460	8820	
Karbonathärte	mgCaO/I	53,3	61,7	53,3	78,5	21,6
Gesamthärte	mmol/l	20,4	23,0	21,1	21,1	26,6
ges. wirksame Acidität	mmol/l					60,0
TIC	mg/l	180	270	260	280	54
DOC	mg/l	3,7	4,8	3,6	7,1	11
Ammonium (N)	mg/l	3,90	2,27	2,53	2,76	4,00
Nitrat (N)	mg/l	0,1	0,4	0,64	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,02	0,01	<0,007	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,035	0,037	0,070	0,110	0,049
Sulfat	mg/l	5140	4780	4910	5390	6290
Chlorid	mg/l	250	241	210	114	129
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0.04	
Calcium (Ca)	mg/l	440	559	450	450	439
Magnesium (Mg)	mg/l	228	220	240	240	380
Natrium (Na)	mg/l	68,9	130	80	160	155
Kalium (K)	mg/l	28,3	15,0	15,0	11,0	36,4
Eisen (Fe), gesamt	mg/l	20,0	10,0	10,0	11,0	00,1
Eisen (Fe) gelöst	mg/l	1770	1800	1590	1640	2400
Eisen (2+)	mg/l	1670	1330	1590	1640	2400
Mangan (Mn) gesamt	mg/l	1070	1000	1000	1010	2100
Mangan (Mn) gelöst	mg/l	32,6	37	27	27	40
Silizium (Si)	mg/l	32,0	- 01	21	21	70
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)						
Cadmium (Cd)	mg/l					
	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ		07.0	77.0	F / /	F0 F	440.5
Summe Kationen	mmoleq/l	67,0	77,9	54,4	58,5	148,5
Summe Anionen	mmoleq/l	75,3	74,9	51,1	65,7	134,6
Ionenbilanz-Fehler	%	-5,8	2,0	3,2	-5,8	4,9
CSB	mg/l					

LMBV VT3 Seite 16 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61804

Markscheidernummer		61804	61804	61804	61804	61804	61804	61804
Messstellenname		M2-4	M2-4	M2-4	M2-4	M2-4	M2-4	M2-4
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	iy I	17.09.07	10.01.08		28.07.08		10.02.09	21.04.09
Vor-Ort-Parameter		17.09.07	10.01.06	23.04.00	20.07.00	04.11.00	10.02.09	21.04.09
	°C	1.4	10.7	12.2	10 E	10.1	10 E	12.5
Grundwassertemperatur	U	14	10,7	13,3	18,5	12,1	10,5	13,5
pH-Wert	- 0/	5,6	5,5	5,6	5,5	5,6	5,8	5,5
elektr. Leitfähigkeit	μS/cm	6300	5500	5370	5470	5420	5220	5140
Sauerstoff	mg/l	2,2	1,5	2,8	3,5	0,9	1,7	1,1
Redoxspannung	mV	200	100	96	5	53	169	25
KB 4,3 (bei pH<4,3)	mmol/l						-	4.0
KS 4,3 (bei pH>4,3)	mmol/l	3,0	2,0	2,2	2,2	2,8	2,1	1,9
KB 8,2 (bei pH<8,2)	mmol/l	32,6	25,8	22,8	29,8	18,2	17,1	20,0
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik	1							
pH-Wert		5,6	5,4	5,3	5,4	5,5	5,6	5,4
elektr. Leitfähigkeit	μS/cm	6310	5450	5320	5330	5270	5200	5160
Gesamttrockenrückstand	mg/l	13000	7600	6460	6330	6540	6380	6330
Filtrattrockenrückstand	mg/l	7600	6710	6400	6300	6510	6340	6170
Karbonathärte	mgCaO/I		54,88	51,9	61,7	78,50	58,90	53,30
Gesamthärte	mmol/l	21,2	22,4	19,9	20,6	18,9	20,5	20,3
ges. wirksame Acidität	mmol/l	34						
TIC	mg/l	166	91	81	125	128	138	140
DOC	mg/l	1,7	6,7	3,2	4	2,7	2,7	2,8
Ammonium (N)	mg/l	0,84	1,84	1,79	2,5	2,89	1,75	1,98
Nitrat (N)	mg/l	<0,23	0,3	0,3	<0,02	0,03	0,07	0,1
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,011	0,046	<0,007	0,036	0,01	<0,007	0,03
Phosphor gesamt (P)	mg/l	0,39	0,07	0,023	0,05	0,040	0,039	0,036
Sulfat	mg/l	4260	3750	3920	3900	3300	3800	3720
Chlorid	mg/l	290	261	263	271	260	271	252
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	505	512	456	501	437	463	450
Magnesium (Mg)	mg/l	208	233	208	198	195	218	220
Natrium (Na)	mg/l	396	192	189	164	159	160	154
Kalium (K)	mg/l	17,1	28,3	28,7	27,7	16,2	18,7	25,9
Eisen (Fe), gesamt	mg/l	1300	· ·	· ·	· ·	· ·	,	,
Eisen (Fe) gelöst	mg/l	1210	1230	1050	1090	990	1000	942
Eisen (2+)	mg/l	1076	1100	1040	1020	981	925	935
Mangan (Mn) gesamt	mg/l	27,2						
Mangan (Mn) gelöst	mg/l	,	30	26,1	28,2	26,3	28,1	28,2
Silizium (Si)	mg/l	10,5		-,-	- ,-	8,83	-,-	- ,-
Aluminium (AI)	mg/l	<0,1				1,02		
Arsen (As)	mg/l	, -				0,015		
Blei (Pb)	mg/l					0,043		
Cadmium (Cd)	mg/l					<0,001		
Chrom (Cr) ges.	mg/l					0,001		
Kupfer (Cu)	mg/l					<0,01		
Nickel (Ni)	mg/l					0,26		
Zink (Zn)	mg/l					0,20		
IONENBILANZ	1119/1					0,01		
Summe Kationen	mmoleq/l		67,8	58,3	57,7	56,5	56,7	55,0
Summe Anionen	mmoleq/l		58,0	61,5	60,5	53,3	62,5	58,9
Ionenbilanz-Fehler	%	2,2	7,9	-2,7	-2,4	3,0	-4,9	-3,4
CSB		167	۳, ۶	-2,1	-2,4	3,0	-4 ,⊎	-5,4
طدی	mg/l	107						

LMBV VT3 Seite 17 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61804

Markscheidernummer		61804	61804	61804	61804	61804
Messstellenname		M2-4	M2-4	M2-4	M2-4	M2-4
Grundwasserleiterzuordnur		Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19	21.07.09	03.11.09	25.05.10	27.02.12	
Vor-Ort-Parameter		21.01.03	00.11.09	20.00.10	21.02.12	20.00.10
Grundwassertemperatur	°C	16,9	9,7	15,4	9,0	13,5
pH-Wert		5,5	5,7	5,6	5,9	6,1
elektr. Leitfähigkeit	μS/cm	5270	5330	5230	5150	5560
Sauerstoff	mg/l		0,8	0,9	0,7	
Redoxspannung	mV	1,4 48	23	50	88	2,5 223
KB 4,3 (bei pH<4,3)	mmol/l	-	23	50	00	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	1,9	3,5	2,2	2,6	9,1
KB 8,2 (bei pH<8,2)	mmol/l	20,0	35,0	22,4	34,8	13,0
KS 8,2 (bei pH>8,2)	mmol/l	20,0	33,0	22,4	34,0	< 0,05
Laboranalytik	1111101/1					\ 0,03
pH-Wert		5,4	5,5	5,4	5,7	5,7
elektr. Leitfähigkeit	μS/cm					
Gesamttrockenrückstand		5190 6470	5240 6450	5210 6460	5230	5850
	mg/l	6470 6160	6450 6100	6460 6280	7290 6450	
Filtrattrockenrückstand	mg/l				6450	254,6
Karbonathärte Gesamthärte	mgCaO/l mmol/l	53,3 20,6	98,1 24,6	61,7 20,9	72,9 23,3	254,6
ges. wirksame Acidität	mmol/l	20,0	24,0	20,9	23,3	25,4
TIC		120	160	140	170	80
DOC	mg/l	2,4	160 3,4	2,6	4,3	
Ammonium (N)	mg/l			1,57	1,51	8,6
Nitrat (N)	mg/l	1,82	1,36 0,2			0,53
Nitrit (N)	mg/l	0,1	0,2	0,54	< 0,05	< 0,1
Phosphat-ortho (P)	mg/l	<0.007	0.01	0.05	<0.007	0.01
. ,	mg/l	<0,007	0,01	0,05	<0,007	0,01
Phosphor gesamt (P) Sulfat	mg/l	0,043	0,038	0,060	0,210 4120	0,039 3820
Chlorid	mg/l	3900	3640	3280		
Fluorid	mg/l	271	280	222	205	197
Sulfid	mg/l	< 0.04	< 0.04	< 0,04	< 0.04	
	mg/l	< 0,04	< 0,04		< 0,04	E21
Calcium (Ca)	mg/l	506	640 210	490	540 240	521
Magnesium (Mg)	mg/l	193		210		279
Natrium (Na)	mg/l	153	160	130	70	68,7
Kalium (K)	mg/l	27,6	17,0	14,0	13,0	17,9
Eisen (Fe), gesamt	mg/l	005	1000	900	1120	1200
Eisen (Fe) gelöst	mg/l	995	1000	890	1120	1200
Eisen (2+)	mg/l	921	779	889	989	1100
Mangan (Mn) gesamt	mg/l	27.2	22	24	24	44
Mangan (Mn) gelöst	mg/l	27,3	33	24	34	41
Silizium (Si)	mg/l					
Aluminium (AI) Arsen (As)	mg/l					
Blei (Pb)	mg/l mg/l					
` '	•					
Cadmium (Cd) Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	my/i					
Summe Kationen	mmoleq/l	54,8	62,5	80,7	58,5	107,7
Summe Anionen	mmoleq/l	61,6	59,5	76,8	65,7	94,2
Ionenbilanz-Fehler	%	-5,9	2,5	4,9	-5,8	6,7
CSB		-5,8	۷,5	4,9	-5,0	0,7
מטט	mg/l					

LMBV VT3 Seite 18 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61811

Markscheidernummer		61811	61811	61811	61811	61811	61811	61811
Messstellenname		M3-1						
Grundwasserleiterzuordnur		Ki						
	ig I							
Probenahmedatum		17.09.07	15.01.08	22.04.08	24.07.08	10.11.08	16.02.09	20.04.09
Vor-Ort-Parameter	00	40.5	44.0	40.5	40.5	44.0	0.0	45.5
Grundwassertemperatur	°C	13,5	11,3	12,5	16,5	14,3	9,0	15,5
pH-Wert	-	5,7	5,7	5,3	5,3	5,0	5,6	5,6
elektr. Leitfähigkeit	μS/cm	6200	7420	7850	7420	6040	8100	7980
Sauerstoff	mg/l	1,7	3,4	3,0	2,6	1,1	0,5	0,5
Redoxspannung	mV	200	106	88	6	135	111	39
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	1,9	0,9	1,9	1,2	0,9	1,1	1,0
KB 8,2 (bei pH<8,2)	mmol/l	22,3	44,9	49,5	48,6	55,7	34,2	62,1
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,7	5,5	4,0	4,9	4,5	4,8	4,8
elektr. Leitfähigkeit	μS/cm	6400	7270	8250	7430	8150	8090	7590
Gesamttrockenrückstand	mg/l	7700	10000	11300	10900	12700	12000	12200
Filtrattrockenrückstand	mg/l	7600	9900	11200	10400	12200	11800	12200
Karbonathärte	mgCaO/l		26,32	53,3	33,6	25,20	30,80	28,00
Gesamthärte	mmol/l	19,3	17,6	21,8	20,1	21,1	20,3	21,9
ges. wirksame Acidität	mmol/l	32	,	,	,	,	,	,
TIC	mg/l	61,3	82	83	131	121	128	130
DOC	mg/l	7,4	28	8,4	8,9	5,5	6,8	5,4
Ammonium (N)	mg/l	1,36	4,23	2,86	5,4	7,78	4,55	5,65
Nitrat (N)	mg/l	<0,23	0,3	0,3	<0,02	0,7	0,08	0,1
Nitrit (N)	mg/l	<0,015	0,0	0,0	10,02	0,1	0,00	0,1
Phosphat-ortho (P)	mg/l	0,011	0,082	0,059	<0,007	<0,007	<0,007	0,009
Phosphor gesamt (P)	mg/l	0,36	0,002	0,06	<0,007	0,027	0,030	0,036
Sulfat	mg/l	4650	5380	7190	6540	7360	7740	7680
Chlorid	mg/l	145	186	217	225	185	175	169
Fluorid	mg/l	<0,2	100	217	223	100	173	109
Sulfid			<0.04	<0.04	<0.04	<0,04	< 0,04	< 0.04
	mg/l	<0,1	<0,04	,	<0,04			< 0,04
Calcium (Ca)	mg/l	467	382	455	440	432	401	472
Magnesium (Mg)	mg/l	187	195	253	222	250	251	247
Natrium (Na)	mg/l	618	517	417	312	201	218	199
Kalium (K)	mg/l	21	39,9	47,6	49,2	50,7	50,3	49,9
Eisen (Fe), gesamt	mg/l	1070						
Eisen (Fe) gelöst	mg/l	1070	2000	2500	2480	2820	3040	3120
Eisen (2+)	mg/l	956	1860	2490	2220	2700	2690	2810
Mangan (Mn) gesamt	mg/l	19,4						
Mangan (Mn) gelöst	mg/l		22	27,5	31,6	30,1	31,8	35
Silizium (Si)	mg/l	13						
Aluminium (AI)	mg/l	<0,1						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		89,4	97,9	90,5	94,6	100,6	99,6
Summe Anionen	mmoleq/l		79,7	101,4	93,4	100,9	111,9	105,5
Ionenbilanz-Fehler	%	1,1	5,7	-1,8	-1,6	-3,3	-5,3	-2,9
CSB	mg/l	169	٥,.	.,5	.,5	5,5	-,-	_,~
1000	1119/1	100						

LMBV VT3 Seite 19 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61811

Markscheidernummer		61811	61811	61811	61811	61811
Messstellenname		M3-1	M3-1	M3-1	M3-1	M3-1
Grundwasserleiterzuordnui	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	27.07.09	04.11.09	27.05.10	15.02.12	
Vor-Ort-Parameter		21.01.03	04.11.03	27.03.10	13.02.12	20.00.13
Grundwassertemperatur	°C	17,6	11,3	15,1	9,4	12,8
pH-Wert		4,7	5,8	4,8	4,9	4,5
elektr. Leitfähigkeit	μS/cm	8210	8120	7860	7420	6870
Sauerstoff	mg/l	1,2	2,1	1,0	1,2	2,3
Redoxspannung	mV	137	93	125	146	424
KB 4,3 (bei pH<4,3)	mmol/l		93	123	140	< 0,05
	mmol/l	0,7	0.0	0,3	0.0	< 0,05
KS 4,3 (bei pH>4,3)			0,8 92,2	53,6	0,8 98,2	39,4
KB 8,2 (bei pH<8,2)	mmol/l	95,7	92,2	55,6	90,2	< 0,05
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik pH-Wert		4.2	4 E	4.2	4,7	2.0
•	uC/am	4,3	4,5	4,3		3,9
elektr. Leitfähigkeit	μS/cm	8140	8040	7930	7760	7830
Gesamttrockenrückstand	mg/l	10400	12900	13160	12900	
Filtrattrockenrückstand	mg/l	9990	12870	1220	11900	
Karbonathärte	mgCaO/I	19,6	22,4	8,4	22,4	- 24.0
Gesamthärte	mmol/l	20,2	18,3	19,4	21,4	21,9
ges. wirksame Acidität	mmol/l	400	400	440	450	98,2
TIC	mg/l	130	130	110	150	9,6
DOC	mg/l	5,7	4,6	5,2	3,7	6,2
Ammonium (N)	mg/l	4,26	4,69	5,2	4,63	5
Nitrat (N)	mg/l	0,20	0,30	1,02	< 0,05	< 0,1
Nitrit (N)	mg/l		.0.007	.0.007	.0.007	. 0 005
Phosphat-ortho (P)	mg/l	0.440	<0,007	<0,007	<0,007	< 0,005
Phosphor gesamt (P)	mg/l	0,110	0,074	0,120	0,070	< 0,005
Sulfat	mg/l	7550	7620	7790	8070	7630
Chlorid	mg/l	157	152	161	164	147
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	421	420	430	460	445
Magnesium (Mg)	mg/l	236	190	210	240	262
Natrium (Na)	mg/l	155	120	130	120	75,4
Kalium (K)	mg/l	30,5	26,0	27,0	35,0	25,3
Eisen (Fe), gesamt	mg/l	0445	0.405	00==	00==	0000
Eisen (Fe) gelöst	mg/l	3140	3400	2950	2850	2800
Eisen (2+)	mg/l	2670	3140	2840	2670	2700
Mangan (Mn) gesamt	mg/l	64.		2.4		
Mangan (Mn) gelöst	mg/l	34,1	30	31	30	30
Silizium (Si)	mg/l	14,3		19	3,9	12
Aluminium (Al)	mg/l	7,03		7,2	27	30
Arsen (As)	mg/l	0,013		0,027	0,031	0,038
Blei (Pb)	mg/l	0,175		0,001	0,001	< 0,005
Cadmium (Cd)	mg/l	0,001		0,0002	0,0002	0,002
Chrom (Cr) ges.	mg/l	0,04		0,002	0,004	0,006
Kupfer (Cu)	mg/l	0,01		< 0,001	< 0,001	< 0,005
Nickel (Ni)	mg/l	0,34		0,47	0,93	0,86
Zink (Zn)	mg/l	4,24		6	5,3	5
IONENBILANZ						
Summe Kationen	mmoleq/l	99,8	107,1	90,4	93,6	155,8
Summe Anionen	mmoleq/l	103,2	104,0	105,8	113,2	163,0
Ionenbilanz-Fehler	%	-1,7	1,5	-7,9	-9,5	-2,3
CSB	mg/l					

LMBV VT3 Seite 20 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61812

Markscheidernummer	l	61812	61812	61812	61812	61812	61812	61812
Messstellenname		M3-2	M3-2	M3-2	M3-2	M3-2	M3-2	M3-2
Grundwasserleiterzuordnur	20	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I		16.01.08			10.11.08	16.02.09	20.04.09
Vor-Ort-Parameter		17.09.07	10.01.06	22.04.00	24.07.08	10.11.06	10.02.09	20.04.09
	°C	14.2	11	12.0	20,2	15,0	0.0	16.7
Grundwassertemperatur	U	14,2	11	12,9			8,0	16,7
pH-Wert		5,8	5,7	5,7	5,7	5,6	5,9	5,9
elektr. Leitfähigkeit	μS/cm	6500	6600	7080	7350	6920	7180	6950
Sauerstoff	mg/l	1,2	2,5	2,4	1,9	1,0	0,8	0,7
Redoxspannung	mV	200	185	53	-1	42	67	-43
KB 4,3 (bei pH<4,3)	mmol/l		4.0		0.4		-	0.0
KS 4,3 (bei pH>4,3)	mmol/l	2,8	1,8	2,9	3,1	2,8	3,2	3,2
KB 8,2 (bei pH<8,2)	mmol/l	28,2	37,8	27,4	41,9	42,1	21,7	34,7
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik	T							
pH-Wert		5,8	5,6	5,5	5,5	6,4	5,3	5,5
elektr. Leitfähigkeit	μS/cm	6650	6500	7250	7220	7170	7210	6680
Gesamttrockenrückstand	mg/l	10000	9420	9680	9470	10400	10540	9870
Filtrattrockenrückstand	mg/l	7900	8870	9100	9350	9580	9490	9660
Karbonathärte	mgCaO/I		49,56	78,5	86,9	78,5	89,7	89,7
Gesamthärte	mmol/l	17,9	18,1	21,1	20,1	20,6	20,5	21,8
ges. wirksame Acidität	mmol/l	32,5						
TIC	mg/l	97,3	83	89	153	146	163	170
DOC	mg/l	2,1	7,8	5,3	5	3,8	3,9	3,4
Ammonium (N)	mg/l	1,03	3,42	2,98	3,6	3,74	3,71	3,13
Nitrat (N)	mg/l	<0,23	0,4	0,5	<0,02	0,8	0,08	0,1
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,013	0,062	0,039	<0,007	<0,007	0,01	<0,007
Phosphor gesamt (P)	mg/l	0,45	0,05	0,38	0,034	0,024	0,470	0,056
Sulfat	mg/l	4690	4720	5450	5470	5630	5840	5770
Chlorid	mg/l	181	192	238	212	224	235	167
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	0,27	0,16	<0,04	0,28	0,14	0,09
Calcium (Ca)	mg/l	445	412	471	438	455	434	498
Magnesium (Mg)	mg/l	166	190	227	222	255	235	229
Natrium (Na)	mg/l	665	435	463	498	459	372	383
Kalium (K)	mg/l	17,7	21,3	33,4	35,3	37,0	22,8	25,8
Eisen (Fe), gesamt	mg/l	1220	,-		, -	- · ,•	,•	,•
Eisen (Fe) gelöst	mg/l	1180	1570	1720	1650	1840	1890	1860
Eisen (2+)	mg/l	1057	1520	1580	1600	1670	1770	1720
Mangan (Mn) gesamt	mg/l	19,3			. 500	.5,0		
Mangan (Mn) gelöst	mg/l	. 0,0	23,1	23,9	25	24,2	24,1	26,6
Silizium (Si)	mg/l	10,6	20,1	20,0		- r,-	<u> </u>	20,0
Aluminium (Al)	mg/l	<0,1						
Arsen (As)	mg/l	ו ,טר						
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)								
. ,	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ	mmala = "		77 7	02.2	70.5	05.0	00.7	04.4
Summe Kationen	mmoleq/l		77,7	83,3	79,5	85,8	82,7	81,1
Summe Anionen	mmoleq/l	4.0	71,4	82,2	81,4	83,8	91,4	85,6
Ionenbilanz-Fehler	%	1,2	4,2	0,7	-1,2	1,2	-5,0	-2,7
CSB	mg/l	165						

LMBV VT3 Seite 21 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61812

Markscheidernummer		61812	61812	61812	61812	61812
Messstellenname		M3-2	M3-2	M3-2	M3-2	M3-2
Grundwasserleiterzuordnui	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ly I	27.07.09	09.11.09	27.05.10	14.02.12	
Vor-Ort-Parameter		21.01.03	03.11.03	27.03.10	14.02.12	20.00.13
Grundwassertemperatur	°C	18,3	8,6	13,1	7,2	12,8
pH-Wert		5,4	5,5	5,6	5,9	5,5
elektr. Leitfähigkeit	μS/cm	7270	7480	7220	6090	5530
Sauerstoff	mg/l		1,3			
Redoxspannung	mV	0,0 1	1,3	1,5 162	1,7 53	2,5 301
KB 4,3 (bei pH<4,3)	mmol/l	-	14	102	55	< 0,05
		- 2.7	2.4	2.2	2.0	
KS 4,3 (bei pH>4,3)	mmol/l	2,7	3,4 64,2	2,3	2,9	5,0
KB 8,2 (bei pH<8,2)	mmol/l	52,4	04,2	32,2	63,8	22,2
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik		F 0	E 4	F 2	E 1	F 2
pH-Wert	uC/am	5,2	5,4	5,2	5,4	5,3
elektr. Leitfähigkeit	μS/cm	7220	7230	7200	5700	5980
Gesamttrockenrückstand	mg/l	12700	10370	10220	9620	
Filtrattrockenrückstand	mg/l	9710	9900	9600	7620	111 01
Karbonathärte	mgCaO/I	75,7	95,3	64,5	81,3	141,04
Gesamthärte	mmol/l	21,3	23,2	22,3	29,8	22,5
ges. wirksame Acidität	mmol/l	400	400	4.40	400	41,1
TIC	mg/l	160	160	140	120	55
DOC	mg/l	4,0	3,6	4,0	3,3	8,7
Ammonium (N)	mg/l	2,76	1,88	2,78	1,86	2,8
Nitrat (N)	mg/l	0,10	0,03	0,99	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l		<0,007	0,02	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,100	0,063	0,040	0,030	0,026
Sulfat	mg/l	5880	5850	5980	5220	4470
Chlorid	mg/l	255	272	304	69	260
Fluorid	mg/l					
Sulfid	mg/l	0,11	0,22	< 0,04	< 0,04	
Calcium (Ca)	mg/l	457	550	480	550	476
Magnesium (Mg)	mg/l	240	230	250	390	259
Natrium (Na)	mg/l	305	340	280	130	117
Kalium (K)	mg/l	22,9	22,0	18,0	22,0	19,2
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	1990	1720	1820	1390	1500
Eisen (2+)	mg/l	1630	1710	1810	1260	1400
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	26,1	28	22	30	21
Silizium (Si)	mg/l					
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	, ,	70.0	04.0	76.4	740	407.4
Summe Kationen	mmoleq/l	79,2	81,6	78,1	74,6	107,1
Summe Anionen	mmoleq/l	88,1	89,3	90,8	74,1	105,4
Ionenbilanz-Fehler	%	-5,4	-4,6	-7,5	0,3	0,8
CSB	mg/l					

LMBV VT3 Seite 22 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61813

Markscheidernummer		61813	61813	61813	61813	61813	61813	61813
Messstellenname		M3-3						
Grundwasserleiterzuordnur	ng	Ki						
Probenahmedatum	Ĭ	17.09.07	15.01.08	22.04.08	24.07.08	10.11.08	16.02.09	20.04.09
Vor-Ort-Parameter								
Grundwassertemperatur	°C	13,3	10,9	13,2	16,6	13,6	9,3	16,5
pH-Wert	-	5,9	6,1	5,9	6,0	6,0	6,1	6,1
elektr. Leitfähigkeit	μS/cm	5900	6050	6220	6400	5380	6270	6460
Sauerstoff	mg/l	2,2	2,1	3,1	1,8	0,8	0,5	0,7
Redoxspannung	mV	210	59	72	-2	36	44	-55
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	3,4	3,4	3,8	2,9	4,3	4,4	3,8
KB 8,2 (bei pH<8,2)	mmol/l	18,7	23,5	15,3	27,2	19,1	18,2	29,8
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		6,0	5,9	5,9	5,8	5,6	5,7	5,8
elektr. Leitfähigkeit	μS/cm	6030	5870	6300	6360	5190	6410	6110
Gesamttrockenrückstand	mg/l	8100	7870	8260	8720	9180	9100	8980
Filtrattrockenrückstand	mg/l	7300	7710	8040	8700	9160	8470	8960
Karbonathärte	mgCaO/l		96,32	103,7	81,3	120,6	123,4	106,6
Gesamthärte	mmol/l	26,6	30,8	35,2	32,8	32,3	31,8	31,3
ges. wirksame Acidität	mmol/l	22,4						
TIC	mg/l	93,4	79	131	128	115	120	130
DOC	mg/l	1,4	10	3,8	3,4	2,5	2,7	2,7
Ammonium (N)	mg/l	1,03	2,32	2,14	2,9	4,22	2,57	2,92
Nitrat (N)	mg/l	<0,23	0,3	0,3	<0,02	0,9	0,03	< 0,02
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,011	0,042	0,024	0,029	<0,007	0,007	0,011
Phosphor gesamt (P)	mg/l	0,37	0,05	0,042	0,071	0,024	0,017	0,039
Sulfat	mg/l	4480	4870	5970	5600	5610	5570	5650
Chlorid	mg/l	98,8	60	51,4	49	56,3	50,5	45
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	0,14
Calcium (Ca)	mg/l	494	448	489	467	473	469	499
Magnesium (Mg)	mg/l	347	477	560	513	497	489	458
Natrium (Na)	mg/l	416	203	166	112	104	92	80,8
Kalium (K)	mg/l	22,4	35,2	38,1	38,7	38,4	28,3	30,2
Eisen (Fe), gesamt	mg/l	875						
Eisen (Fe) gelöst	mg/l	834	915	1060	1360	1410	1480	1530
Eisen (2+)	mg/l	726	823	1010	1170	1320	1240	1440
Mangan (Mn) gesamt	mg/l	25,3						
Mangan (Mn) gelöst	mg/l		34,6	43,6	52,5	53,9	51,5	65,5
Silizium (Si)	mg/l	11						
Aluminium (AI)	mg/l	<0,1						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		66,9	70,7	72,1	74,7	75,3	73,8
Summe Anionen	mmoleq/l		69,3	83,2	76,2	76,4	79,3	76,0
Ionenbilanz-Fehler	%	1,6	-1,8	-8,1	-2,8	-1,1	-2,6	-1,5
CSB	mg/l	114						

LMBV VT3 Seite 23 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61813

	Ī	0.40.40	04040	04040	04040	04040
Markscheidernummer		61813	61813	61813	61813	61813
Messstellenname		M3-3	M3-3	M3-3	M3-3	M3-3
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		27.07.09	09.11.09	27.05.10	14.02.12	26.08.15
Vor-Ort-Parameter	T					
Grundwassertemperatur	°C	18,1	8,7	13,1	6,5	13,3
pH-Wert	-	6,2	5,9	6,0	5,4	6,3
elektr. Leitfähigkeit	μS/cm	6250	6570	6700	5740	4720
Sauerstoff	mg/l	0,5	1,0	1,0	1,4	1,6
Redoxspannung	mV	57	-30	85	52	198
KB 4,3 (bei pH<4,3)	mmol/l	-				< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	4,1	4,6	3,7	3,9	4,5
KB 8,2 (bei pH<8,2)	mmol/l	45,6	41,7	28,9	48,1	17,2
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik						
pH-Wert		5,7	5,8	5,6	5,4	5,8
elektr. Leitfähigkeit	μS/cm	6370	6360	6660	6190	5290
Gesamttrockenrückstand	mg/l	9040	8760	11010	9630	
Filtrattrockenrückstand	mg/l	8630	8750	9530	8570	
Karbonathärte	mgCaO/l	115	129	103,7	109,4	125,62
Gesamthärte	mmol/l	31,7	35,0	28,3	35,4	29,1
ges. wirksame Acidität	mmol/l					45,6
TIC	mg/l	120	130	110	230	50
DOC	mg/l	3,1	2,6	3,2	4,1	36
Ammonium (N)	mg/l	2,50	1,54	1,64	2,07	1,90
Nitrat (N)	mg/l	0,07	0,1	1,11	< 0,05	< 0,1
Nitrit (N)	mg/l	,	,	,	,	,
Phosphat-ortho (P)	mg/l	0,03	<0,007	0,01	<0,007	0,01
Phosphor gesamt (P)	mg/l	0,034	0,032	0,050	0,055	0,620
Sulfat	mg/l	5080	5540	5340	5740	4510
Chlorid	mg/l	57,8	57,0	72,8	223,0	107,0
Fluorid	mg/l	,	,	,	,	,
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	498	560	460	610	512
Magnesium (Mg)	mg/l	468	510	410	490	396
Natrium (Na)	mg/l	75,5	72	60	65	74,6
Kalium (K)	mg/l	27,5	23,0	21,0	22,0	19,3
Eisen (Fe), gesamt	mg/l	,-	- , -	,-	,-	-,-
Eisen (Fe) gelöst	mg/l	1240	1400	1580	1130	1100
Eisen (2+)	mg/l	1240	1250	1570	1040	1100
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	57,9	62	60	38	34
Silizium (Si)	mg/l	J., U				•
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	1119/1					
Summe Kationen	mmoleq/l	69,1	78,6	73,7	71,9	102,6
Summe Anionen	mmoleq/l	68,0	76,0	72,5	85,6	102,0
Ionenbilanz-Fehler	%	0,8	1,6	0,9	-8,7	0,6
CSB	mg/l	0,0	1,0	0,5	-0,1	0,0
000	my/i					L

LMBV VT3 Seite 24 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61814

Markscheidernummer		61814	61814	61814	61814	61814	61814	61814
Messstellenname		M3-4	M3-4	M3-4	M3-4	M3-4	M3-4	M3-4
Grundwasserleiterzuordnur	าต	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		17.09.07			24.07.08			
Vor-Ort-Parameter								
Grundwassertemperatur	°C	13,7	10,9	12,2	15,8	13,4	9,2	16,5
pH-Wert	-	6,0	6,0	5,8	6,0	5,9	6,1	6,1
elektr. Leitfähigkeit	μS/cm	6600	6720	6070	6840	5540	6680	6710
Sauerstoff	mg/l	2,9	1,4	2,6	4,4	0,6	0,8	0,5
Redoxspannung	mV	210	87	98	6	42	43	-28
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	4,0	1,6	3,8	3,3	3,1	3,8	4,2
KB 8,2 (bei pH<8,2)	mmol/l	23,7	31,4	16,5	32,0	23,1	19,3	29,5
KS 8,2 (bei pH>8,2)	mmol/l	,	,	,	,	,	,	,
Laboranalytik								
pH-Wert		6,1	5,8	5,8	5,7	5,5	5,6	5,8
elektr. Leitfähigkeit	μS/cm	6790	6510	6880	6730	5510	6760	6430
Gesamttrockenrückstand	mg/l	10000	9390	9390	9460	9750	9530	9390
Filtrattrockenrückstand	mg/l	8500	9230	9060	9370	9550	9370	9370
Karbonathärte	mgCaO/l		44,8	78,5	92,5	86,9	106,6	117,8
Gesamthärte	mmol/l	31,1	31,2	34,2	34,1	33,9	32,2	32,3
ges. wirksame Acidität	mmol/l	29,7	,	,	,	,	,	,
TIC	mg/l	98,8	81	80	124	122	124	140
DOC	mg/l	2,2	6,8	3,7	4,5	3,4	3,8	3,7
Ammonium (N)	mg/l	1,28	3,25	2,74	3,4	5,83	3,29	3,33
Nitrat (N)	mg/l	<0,23	0,4	0,9	<0,02	3,3	< 0,02	0,1
Nitrit (N)	mg/l	<0,015	,		,		, , , , , , , , , , , , , , , , , , ,	,
Phosphat-ortho (P)	mg/l	0,011	0,039	0,028	0,033	<0,007	0,02	0,01
Phosphor gesamt (P)	mg/l	0,41	0,06	0,04	0,08	0,013	0,062	0,041
Sulfat	mg/l	5300	5200	5880	5740	5890	6070	5620
Chlorid	mg/l	66,6	68,8	13,2	49	49,9	45,6	48
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	0,05	0,07	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	516	467	507	511	517	475	542
Magnesium (Mg)	mg/l	444	476	524	519	510	495	456
Natrium (Na)	mg/l	441	268	207	156	143	135	172
Kalium (K)	mg/l	23,2	29,3	36,4	39,3	36,9	28,2	31,1
Eisen (Fe), gesamt	mg/l	1110						
Eisen (Fe) gelöst	mg/l	1040	1190	1330	1430	1450	1520	1520
Eisen (2+)	mg/l	724	1170	1250	1420	1400	1420	1410
Mangan (Mn) gesamt	mg/l	43,8						
Mangan (Mn) gelöst	mg/l		54,2	55,7	61,4	62,5	59,9	68,4
Silizium (Si)	mg/l	9,79						
Aluminium (Al)	mg/l	<0,1						
Arsen (As)	mg/l	-						-
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l	-	77,9	79,5	79,6	79,4	78,5	79,2
Summe Anionen	mmoleq/l		71,9	77,9	75,7	79,1	85,2	75,8
Ionenbilanz-Fehler	%	1,9	4,0	-1,0	2,5	0,2	-4,1	2,2
CSB	mg/l	129						

LMBV VT3 Seite 25 von 26

Witznitz Messplatz Kippe Zeitreihen, Mehrfach-GWM

Messstelle 61814

Markscheidernummer		61814	61814	61814	61814	61814
Messstellenname		M3-4	M3-4	M3-4	M3-4	M3-4
Grundwasserleiterzuordnur	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19 	27.07.09	04.11.09	27.05.10	15.02.12	
Vor-Ort-Parameter		21.01.03	04.11.03	27.03.10	13.02.12	20.00.13
Grundwassertemperatur	°C	18,2	11,3	13,9	8,5	14,6
pH-Wert	U	5,7	5,8	5,9	5,9	5,8
elektr. Leitfähigkeit	μS/cm	6780	6960	6920	6570	5410
Sauerstoff	mg/l				0,9	
Redoxspannung	mV	0,5 20	1,4 -12	0,8 43	100	2,2 274
KB 4,3 (bei pH<4,3)			-12	43	100	< 0,05
· · · · · · · · · · · · · · · · · · ·	mmol/l	- 2.7	2.2	2.2	4.0	
KS 4,3 (bei pH>4,3)	mmol/l	3,7	3,2	3,3	4,0	1,3
KB 8,2 (bei pH<8,2)	mmol/l	50,2	51,9	31,4	62,7	21,0
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik	1	5 0	<i>-</i> 7	5 0	5 0	
pH-Wert	0/	5,6	5,7	5,6	5,8	5,5
elektr. Leitfähigkeit	μS/cm	6770	6320	6920	6680	6170
Gesamttrockenrückstand	mg/l	10100	9830	11090	10800	
Filtrattrockenrückstand	mg/l	9750	9710	9710	9620	0= 5 :
Karbonathärte	mgCaO/I	103,7	89,7	92,5	112,2	35,61
Gesamthärte	mmol/l	34,5	31,0	28,4	27,0	27,0
ges. wirksame Acidität	mmol/l					62,4
TIC	mg/l	130	130	100	140	29
DOC	mg/l	3,7	3,6	4,1	2,5	69
Ammonium (N)	mg/l	3,35	2,38	2,29	1,4	2,5
Nitrat (N)	mg/l	0,10	0,20	1,15	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l		0,01	<0,007	0,01	0,02
Phosphor gesamt (P)	mg/l	0,057	0,043	0,040	0,060	1,600
Sulfat	mg/l	5920	6410	5950	6500	6280
Chlorid	mg/l	53,9	53,4	54,6	60,0	136,0
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	601	500	480	470	483
Magnesium (Mg)	mg/l	473	450	400	370	364
Natrium (Na)	mg/l	182	98	100	64	59
Kalium (K)	mg/l	25,7	23,0	22,0	22,0	20,6
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	1440	1600	1610	1890	1900
Eisen (2+)	mg/l	1370	1400	1600	1850	1700
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	69,0	61,0	66,0	63,0	64,0
Silizium (Si)	mg/l					
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	J					
Summe Kationen	mmoleq/l	79,4	74,3	73,6	77,0	131,3
Summe Anionen	mmoleq/l	76,7	90,0	80,6	91,9	135,9
Ionenbilanz-Fehler	%	1,7	-9,4	-4,5	-8,8	-1,7
CSB	mg/l	,	-,-	,-	-,-	, .
	9, '					

LMBV VT3 Seite 26 von 26

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61591

Markscheidernummer		61591	61591	61591	61591	61591	61591	61591
						RKB1		
Messstellenname		RKB1	RKB1	RKB1	RKB1		RKB1	RKB1
Grundwasserleiterzuordnur	ng	Ki						
Probenahmedatum		19.07.07	17.01.08	23.04.08	30.07.08	13.11.08	18.02.09	27.04.09
Vor-Ort-Parameter	0.0	4= 4	0.5	40.0	44.5	44.5		40.0
Grundwassertemperatur	°C	15,4	9,5	13,3	14,5	11,5	6,9	16,9
pH-Wert	-	4	5	5	5	5	5	6
elektr. Leitfähigkeit	μS/cm	3790	4000	3770	3830	3850	3740	3630
Sauerstoff	mg/l	3,6	3,0	3,4	4,5	4,2	1,3	1,1
Redoxspannung	mV	340	167	216	14	170	145	150
KB 4,3 (bei pH<4,3)	mmol/l	0,18					-	
KS 4,3 (bei pH>4,3)	mmol/l		0,30	0,70	0,40	0,4	0,3	0,7
KB 8,2 (bei pH<8,2)	mmol/l	20,1	11,0	14,6	24,7	18,1	11,6	20,3
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		4,0	4,4	4,9	4,8	3,5	4,0	3,6
elektr. Leitfähigkeit	μS/cm	3900	3800	3750	3800	3830	3710	3640
Gesamttrockenrückstand	mg/l	5200	5110	4700	4610	5020	4630	4640
Filtrattrockenrückstand	mg/l	4900	4830	6440	4580	4990	4490	4490
Karbonathärte	mgCaO/l		8,4	19,6	11,2	11,2	8,4	19,6
Gesamthärte	mmol/l	19,7	17,9	19,2	18,3	20,0	20,3	18,7
ges. wirksame Acidität	mmol/l	20,9	,-	- ,—	-,-	,-	-,-	7 -
TIC	mg/l	50,3	113	83	113	121	101	120
DOC	mg/l	2,6	4,5	3,1	3,5	2,5	2,3	2,4
Ammonium (N)	mg/l	2,67	2,61	2,5	2,79	2,29	2,73	2,77
Nitrat (N)	mg/l	<0,23	0,3	<0,02	0,1	0,8	0,2	0,1
Nitrit (N)	mg/l	<0,015	0,0	10,02	0,1	0,0	0,2	0,1
Phosphat-ortho (P)	mg/l	0,004	0,036	<0,007	0,026	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,05	0,007	0,020	0,007	0,007	0,007
Sulfat	mg/l	3560	2930	2820	3050	3010	2980	2900
Chlorid	mg/l	38,5	30,5	49,6	29,2	33,4	28,6	35
Fluorid	mg/l	<0,2	30,3	49,0	29,2	33,4	20,0	33
Sulfid		<0,2	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
	mg/l	510	437	478			514	454
Calcium (Ca)	mg/l				511	505		
Magnesium (Mg)	mg/l	170	169	176	136	180	181	179
Natrium (Na)	mg/l	25,8	21,8	20,1	20,4	23,6	19,7	20,9
Kalium (K)	mg/l	11,8	10,6	16,3	17,6	18,7	11,4	16,2
Eisen (Fe), gesamt	mg/l	631	000	000	661	600	0.15	000
Eisen (Fe) gelöst	mg/l	624	600	629	681	622	613	602
Eisen (2+)	mg/l	554	574	620	580	612	540	572
Mangan (Mn) gesamt	mg/l	22,9						
Mangan (Mn) gelöst	mg/l		20,9	20,4	23,3	21,7	22	21
Silizium (Si)	mg/l	2,24	15,7					
Aluminium (AI)	mg/l	14,9	1,13					
Arsen (As)	mg/l		<0,005					
Blei (Pb)	mg/l		<0,005					
Cadmium (Cd)	mg/l		0,002					
Chrom (Cr) ges.	mg/l		<0,01					
Kupfer (Cu)	mg/l		<0,01					
Nickel (Ni)	mg/l		0,15					
Zink (Zn)	mg/l		0,83					
IONENBILANZ	Ŭ							
Summe Kationen	mmoleq/l		39,2	41,9	40,3	42,8	43,1	39,2
Summe Anionen	mmoleq/l		42,3	39,6	43,5	41,9	42,9	41,6
Ionenbilanz-Fehler	%	-7,6	-3,8	2,8	-3,8	1,1	0,3	-3,1
CSB	mg/l	93,1	,-	_,0	3,3	.,,	5,5	<u> </u>
000	my/i	JJ, I					<u> </u>	

LMBV VT3 Seite 1 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61591

Messstellenname RKB1 RKB1 RKB1 RKB1 Grundwasserleiterzuordnung Ki Ki Ki Ki Ki Ki Ki K	Markashaidaraummar		61591	61501	61591	61501
Grundwasserleiterzuordnung	Markscheidernummer			61591		61591
Probenahmedatum 29.07.09 12.11.09 25.05.10 04.09.15		L				
Vor-Ort-Parameter Grundwassertemperatur Pt-Wert - 5 5 5 5 6 6		ng				
Grundwassertemperatur			29.07.09	12.11.09	25.05.10	04.09.15
pH-Wert elektr. Leitfähigkeit μS/cm 4060 3880 3790 3850 Sauerstoff mg/l 1,6 0,9 2,2 3,9 Redoxspannung mV 160 80 98 275 KB 4,3 (bei pH<4,3)		0.0	40.0	44.0	47.0	40.4
Elektr. Leitfähigkeit	•	°C.				
Sauerstoff		-				
Redoxspannung mV 160 80 98 275 KB 4,3 (bei pH<4,3)		_				
KB 4,3 (bei pH<4,3) mmol/l 1,1 0,6 0,6 0,7 KS 4,3 (bei pH>4,3) mmol/l 1,1 0,6 0,6 0,7 KS 8,2 (bei pH>8,2) mmol/l 24,2 20,8 14,7 15,8 KS 8,2 (bei pH>8,2) mmol/l - < <0,05 Laboranalytik pH-Wert 3,8 4,9 4,2 5,0 elektr. Leitfähigkeit µS/cm 3810 3730 3790 3860 Gesamttrockenrückstand mg/l 4660 5000 4810 Filtrattrockenrückstand mg/l 4640 4990 4700 Karbonathärte mmol/l 30,8 16,8 16,8 20,75 Gesamthärte mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l 120 110 140 63 DOC mg/l 3,0 2,6 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1 Nitrit (N) mg/l 0,1 0,03 1,78 < 0,1 Nitrit (N) mg/l 0,035 0,050 0,250 0,031 Sulfat mg/l 2920 3110 2690 2690 Chlorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 22,1 22 23 25,8 Kalium (Ka) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 10,3 11,0 10,0 11,8 Eisen (Fe) gelöst mg/l 21,8 21 19 18 Eisen (Fe) mg/l		-				
KS 4,3 (bei pH>4,3) mmol/I 1,1 0,6 0,7 KB 8,2 (bei pH<8,2)			160	80	98	
KB 8,2 (bei pH<8,2) mmol/l 24,2 20,8 14,7 15,8 KS 8,2 (bei pH>8,2) mmol/l -			-			
KS 8,2 (bei pH>8,2) mmol/l -						
Laboranalytik pH-Wert elektr. Leitfähigkeit μS/cm 3,8 4,9 4,2 5,0 elektr. Leitfähigkeit μS/cm 3810 3730 3790 3860 Gesamttrockenrückstand mg/l 4660 5000 4810 Filtrattrockenrückstand mg/l 4640 4990 4700 Karbonathärte mgCaO/l 30,8 16,8 16,8 20,75 Gesamthärte mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l 120 110 140 63 DOC mg/l 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 <0,1			24,2	20,8	14,7	
DH-Wert		mmol/l	-			< 0,05
Elektr. Leitfähigkeit						
Gesamttrockenrückstand mg/l 4660 5000 4810 Filtrattrockenrückstand mg/l 4640 4990 4700 Karbonathärte mgCaO/l 30,8 16,8 16,8 20,75 Gesamthärte mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l mg/l 120 110 140 63 DOC mg/l 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 <0,1 Nitrit (N) mg/l 20,007 <0,007 <0,007 0,03 1,78 <0,1 Nitrit (N) mg/l 2920 3110 2690	•					
Filtrattrockenrückstand mg/l 4640 4990 4700 Karbonathärte mgCaO/l 30,8 16,8 16,8 20,75 Gesamthärte mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l 120 110 140 63 DOC mg/l 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 <0,1						3860
Karbonathärte mgCaO/I 30,8 16,8 16,8 20,75 Gesamthärte mmol/I 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/I 20,1 20,1 110 140 63 DOC mg/I 3,0 2,6 2,8 4,2 Ammonium (N) mg/I 2,62 2,26 2,07 2,7 Nitrat (N) mg/I 0,1 0,03 1,78 < 0,1						
Gesamthärte ges. wirksame Acidität mmol/l mmol/l 18,5 19,9 18,3 19,8 ges. wirksame Acidität mmol/l 20,1 20,2 26 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,9 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,0 2,0 2,7 Nitrat (N) mg/l 2,0 2,0 7 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1						
ges. wirksame Acidität mmol/I 120 110 140 63 DOC mg/I 3,0 2,6 2,8 4,2 Ammonium (N) mg/I 2,62 2,26 2,07 2,7 Nitrat (N) mg/I 0,1 0,03 1,78 < 0,1		_				
TIC mg/l 120 110 140 63 DOC mg/l 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1 Nitrit (N) mg/l		mmol/l	18,5	19,9	18,3	
DOC mg/l 3,0 2,6 2,8 4,2 Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1	<u> </u>	mmol/l				
Ammonium (N) mg/l 2,62 2,26 2,07 2,7 Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1						
Nitrat (N) mg/l 0,1 0,03 1,78 < 0,1 Nitrit (N) mg/l 0,007 <0,007	DOC	mg/l	3,0	2,6	2,8	4,2
Nitrit (N) mg/l	Ammonium (N)	mg/l		2,26	2,07	2,7
Phosphat-ortho (P) mg/l < 0,007 < 0,007 0,03 Phosphor gesamt (P) mg/l 0,035 0,050 0,250 0,031 Sulfat mg/l 2920 3110 2690 2690 Chlorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 49,04 < 0,04	Nitrat (N)	mg/l	0,1	0,03	1,78	< 0,1
Phosphor gesamt (P) mg/l 0,035 0,050 0,250 0,031 Sulfat mg/l 2920 3110 2690 2690 Chlorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 20,04 < 0,04		mg/l				
Sulfat mg/l 2920 3110 2690 2690 Chlorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 49,8 30,1 31,6 30,3 Fluorid mg/l 29,0 40,04 <0,04	Phosphat-ortho (P)	mg/l	< 0,007	<0,007	<0,007	0,03
Chlorid mg/l 29,8 30,1 31,6 30,3 Fluorid mg/l 30,3 31,6 30,3 30,3 30,3 30,3 30,3 50,0 470 500 40,04 0,04 <	Phosphor gesamt (P)	mg/l	0,035	0,050	0,250	0,031
Fluorid mg/l	Sulfat		2920	3110	2690	2690
Sulfid mg/l < 0,04 < 0,04 < 0,04 Calcium (Ca) mg/l 449 500 470 500 Magnesium (Mg) mg/l 177 180 160 178 Natrium (Na) mg/l 22,1 22 23 25,8 Kalium (K) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (Fe) gelöst mg/l 559 422 558 650 Eisen (2+) mg/l 21,8 21 19 18 Silizium (Mn) gelöst mg/l 21,8 21 19 18 Silizium (Si) mg/l 422 558 650 Arsen (As) mg/l 40 40 40 40 40 40 40 40 40 40 40 40 40 40 <td< td=""><td>Chlorid</td><td>mg/l</td><td>29,8</td><td>30,1</td><td>31,6</td><td>30,3</td></td<>	Chlorid	mg/l	29,8	30,1	31,6	30,3
Calcium (Ca) mg/l 449 500 470 500 Magnesium (Mg) mg/l 177 180 160 178 Natrium (Na) mg/l 22,1 22 23 25,8 Kalium (K) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (Fe) gelöst mg/l 559 422 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l 70 18 70 18 70 18 70 18 70	Fluorid	mg/l				
Magnesium (Mg) mg/l 177 180 160 178 Natrium (Na) mg/l 22,1 22 23 25,8 Kalium (K) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (Fe) gelöst mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l	Sulfid	mg/l	< 0,04	< 0,04	< 0,04	
Natrium (Na) mg/l 22,1 22 23 25,8 Kalium (K) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l 1	Calcium (Ca)	mg/l	449	500	470	500
Kalium (K) mg/l 10,3 11,0 10,0 11,8 Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l 21,8 21 19 18 Silizium (Si) mg/l 21,8 21 19 18 Silizium (Si) mg/l 38	Magnesium (Mg)	mg/l	177	180	160	178
Eisen (Fe), gesamt mg/l 592 640 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l 21,8 21 19 18 Mangan (Mn) gelöst mg/l 21,8 21 19 18 Silizium (Si) mg/l 31 31 31 31 31 32 <t< td=""><td>Natrium (Na)</td><td>mg/l</td><td>22,1</td><td>22</td><td>23</td><td>25,8</td></t<>	Natrium (Na)	mg/l	22,1	22	23	25,8
Eisen (Fe) gelöst mg/l 592 640 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l	Kalium (K)	mg/l	10,3	11,0	10,0	11,8
Eisen (Fe) gelöst mg/l 592 640 558 650 Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l	1 1					
Eisen (2+) mg/l 559 422 558 650 Mangan (Mn) gesamt mg/l 21,8 21 19 18 Mangan (Mn) gelöst mg/l 21,8 21 19 18 Silizium (Si) mg/l 31 32 <td< td=""><td>` ' '</td><td></td><td>592</td><td>640</td><td>558</td><td>650</td></td<>	` ' '		592	640	558	650
Mangan (Mn) gesamt mg/l 21,8 21 19 18 Silizium (Si) mg/l 21,8 21 19 18 Silizium (Si) mg/l <t< td=""><td>` ' `</td><td>-</td><td>559</td><td>422</td><td>558</td><td></td></t<>	` ' `	-	559	422	558	
Mangan (Mn) gelöst mg/l 21,8 21 19 18 Silizium (Si) mg/l </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
Silizium (Si) mg/l Aluminium (Al) mg/l Arsen (As) mg/l Blei (Pb) mg/l Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ summe Kationen Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4			21,8	21	19	18
Aluminium (Al) mg/l Arsen (As) mg/l Blei (Pb) mg/l Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ summe Kationen Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4	<u> </u>		·			
Arsen (As) mg/l Blei (Pb) mg/l Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ summe Kationen Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4	` '					
Blei (Pb) mg/l Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ Summe Kationen Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4						
Cadmium (Cd) mg/l Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ Summe Kationen Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4		•				
Chrom (Cr) ges. mg/l Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ Summe Kationen Summe Anionen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4						
Kupfer (Cu) mg/l Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ summe Kationen Summe Kationen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4	. ,					
Nickel (Ni) mg/l Zink (Zn) mg/l IONENBILANZ summe Kationen Summe Anionen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4		•				
Zink (Zn) mg/l IONENBILANZ summe Kationen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4		-				
IONENBILANZ Summe Kationen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4	. ,	•				
Summe Kationen mmoleq/l 38,1 40,9 38,4 65,5 Summe Anionen mmoleq/l 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4	` '	J				
Summe Anionen mmoleq/I 40,8 45,7 37,9 57,6 Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4		mmoleg/l	38,1	40,9	38,4	65,5
Ionenbilanz-Fehler % -3,5 -5,6 0,6 6,4						
	CSB	mg/l	-,-	-,-	-,-	-, ·

LMBV VT3 Seite 2 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61601

Markscheidernummer		61601	61601	61601	61601	61601	61601	61601
Messstellenname		RKB2						
Grundwasserleiterzuordnur	<u> </u>	KNDZ	KNDZ	Ki	Ki	KNDZ	Ki	KNDZ
	ıg I							
Probenahmedatum Vor-Ort-Parameter		19.07.07	17.01.08	24.04.08	30.07.08	13.11.06	18.02.09	27.04.09
	°C	16.0	0.1	40.0	116	11 1	6.0	17.1
Grundwassertemperatur	C	16,9	9,1	12,8	14,6	11,4	6,8	17,1
pH-Wert	-	5	5	5	5	5	5	5
elektr. Leitfähigkeit	μS/cm	6470	6280	6290	6270	6320	5920	5800
Sauerstoff	mg/l	1,4	3,0	4,0	5,1	4,2	1,4	1,4
Redoxspannung	mV	320	254	217	13	179	181	170
KB 4,3 (bei pH<4,3)	mmol/l	0.00	4.00	0.55	0.00		-	0.=
KS 4,3 (bei pH>4,3)	mmol/l	0,36	1,00	0,55	0,60	0,7	0,9	0,5
KB 8,2 (bei pH<8,2)	mmol/l	67,3	28,9	49,5	57,6	39,6	30,8	62,2
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		4,6	4,6	4,7	4,4	4,4	4,5	4,3
elektr. Leitfähigkeit	μS/cm	6500	6360	6310	6260	6140	5980	5680
Gesamttrockenrückstand	mg/l	10000	10100	9650	9670	9900	9290	9150
Filtrattrockenrückstand	mg/l	9900	9980	9590	9640	9880	9130	8780
Karbonathärte	mgCaO/l		28	15,4	16,8	19,6	25,2	14,0
Gesamthärte	mmol/l	22,4	20,2	20,5	20,5	21,9	19,8	19,6
ges. wirksame Acidität	mmol/l	75,1						
TIC	mg/l	104	142	155	293	229	254	280
DOC	mg/l	10,8	25	21	22	24	23	22
Ammonium (N)	mg/l	4,99	5,98	4,75	5,66	6,20	5,05	5,61
Nitrat (N)	mg/l	<0,23	0,3	1,6	12,6	0,7	0,04	0,07
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,003	0,085	<0,007	0,012	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,1	0,05	0,05	0,034	0,022	0,050
Sulfat	mg/l	5920	6030	6120	6000	5660	5800	5590
Chlorid	mg/l	45,6	42,7	26,14	38,5	46,4	46,3	48,1
Fluorid	mg/l	<0,2					·	
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	456	394	399	434	449	409	392
Magnesium (Mg)	mg/l	269	253	257	235	261	233	239
Natrium (Na)	mg/l	30,8	28,9	23,5	23,3	27,6	28,4	25,2
Kalium (K)	mg/l	21,8	20,8	37,1	21,5	37,7	18,8	33,4
Eisen (Fe), gesamt	mg/l	2330	- , -		,-	,-	-,-	-,-
Eisen (Fe) gelöst	mg/l	2220	2190	2180	2280	2060	2100	1800
Eisen (2+)	mg/l	2100	2150	2160	2010	2050	1880	1800
Mangan (Mn) gesamt	mg/l	39			_0.0			
Mangan (Mn) gelöst	mg/l		39,3	37,7	39,1	35,5	36,3	31,6
Silizium (Si)	mg/l	0,93	31	34,1	34,2	30,4	28,5	33,7
Aluminium (AI)	mg/l	28,2	3,91	4,94	6,08	6,78	7,11	7,81
Arsen (As)	mg/l	20,2	0,006	0,005	<0,005	0,007	0,022	0,025
Blei (Pb)	mg/l		<0,005	0,068	0,003	0,007	0,022	0,023
Cadmium (Cd)	mg/l		0,008	0,006	0,002	0,001	< 0,000	0,103
Chrom (Cr) ges.	mg/l		<0,000	<0,000	0,002	0,001	0,001	0,001
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,04	0,03	< 0,03	0,04
Nickel (Ni)	mg/l		<0,01	<0,01	0,01	<0,01	0,01	< 0,01
Zink (Zn)	mg/l		1,1	1,03	1,04	0,96	0,01	0,89
IONENBILANZ	ilig/I		1,1	1,03	1,04	0,90	0,01	0,09
	mmolog/l		76.6	74.0	77 0	76.0	7F 0	62.0
Summe Kationen	mmoleq/l		76,6	74,9	77,8	76,8	75,8	63,8
Summe Anionen	mmoleq/l	1.0	81,5	80,5	80,8	74,5	82,1	74,8
Ionenbilanz-Fehler	% ma/l	1,3	-3,1	-3,6	-1,9	1,5	-4,0	-7,9
CSB	mg/l	367						

LMBV VT3 Seite 3 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61601

Markscheidernummer		61601	61601	61601	61601	61601
Messstellenname		RKB2	RKB2	RKB2	RKB2	RKB2
Grundwasserleiterzuordnur	l	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19	29.07.09	12.11.09		16.02.12	04.09.15
Vor-Ort-Parameter		23.01.03	12.11.03	23.03.10	10.02.12	04.03.13
Grundwassertemperatur	°C	19,1	11,4	18,0	8,7	14,0
pH-Wert	<u> </u>	5	5	4	5	5
elektr. Leitfähigkeit	μS/cm	5970	6060	5860	5410	5490
Sauerstoff						
	mg/l mV	1,4	1,4	1,2	3,1 234	2,3 348
Redoxspannung		150	157	137	234	346
KB 4,3 (bei pH<4,3)	mmol/l	-	0.0		0.7	4 0 05
KS 4,3 (bei pH>4,3)	mmol/l	0,3	0,6	45.5	0,7	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	69,5	28,3	45,5	64,3	25,3
KS 8,2 (bei pH>8,2)	mmol/l	-				
Laboranalytik		4.4	4.5	4.4	4.0	4.4
pH-Wert	0.1	4,4	4,5	4,4	4,6	4,1
elektr. Leitfähigkeit	μS/cm	6000	5950	5960	5620	5390
Gesamttrockenrückstand	mg/l	8990	9460	9020	9140	
Filtrattrockenrückstand	mg/l	8920	9440	8890	8380	
Karbonathärte	mgCaO/l	9,5	16,8	n.b.	19,6	-
Gesamthärte	mmol/l	19,4	20,3	18,9	19,4	19,5
ges. wirksame Acidität	mmol/l					54,0
TIC	mg/l	310	240	310	270	60
DOC	mg/l	26	26	27	26	29
Ammonium (N)	mg/l	5,03	4,18	3,58	3,99	5
Nitrat (N)	mg/l	0,1	0,04	< 0,02	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,01	<0,007	<0,007	0,01	0,07
Phosphor gesamt (P)	mg/l	0,12	0,05	0,12	0,14	0,07
Sulfat	mg/l	5410	6180	4650	5610	4800
Chlorid	mg/l	50,5	25	28,3	51,6	41,9
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	0,05	0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	390	450	410	430	440
Magnesium (Mg)	mg/l	235	220	210	210	207
Natrium (Na)	mg/l	29,8	31	30	32	28,9
Kalium (K)	mg/l	19,6	20,0	18,0	19,0	19,8
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	1890	2000	1700	1780	1600
Eisen (2+)	mg/l	1770	1310	1690	1640	1500
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	32,2	33	29	28	25
Silizium (Si)	mg/l	24,1	34	31	18	41
Aluminium (Al)	mg/l	5,98	4,4	3	3,9	3,8
Arsen (As)	mg/l	< 0,005	0,011	0,007	0,006	0,007
Blei (Pb)	mg/l	0,132	0,002	0,002	< 0,001	< 0,005
Cadmium (Cd)	mg/l	0,001	< 0,0002	< 0,0002	< 0,0002	< 0,001
Chrom (Cr) ges.	mg/l	0,04	0,005	0,003	0,006	0,016
Kupfer (Cu)	mg/l	0,01	0,005	0,002	< 0,001	< 0,005
Nickel (Ni)	mg/l	0,01	0,009	0,006	0,009	0,006
Zink (Zn)	mg/l	0,91	0,84	0,8	0,72	0,77
IONENBILANZ			,	,	,	,
Summe Kationen	mmoleq/l	65,4	73,3	63,6	66,0	101,6
Summe Anionen	mmoleq/l	71,9	93,5	59,7	79,8	101,1
Ionenbilanz-Fehler	%	-4,7	-11,6	3,2	-9,5	0,2
CSB	mg/l	,	,-	-,-	-,-	-,-
<u> </u>	ອ⁄ '	<u> </u>				

LMBV VT3 Seite 4 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61611

Markscheidernummer		61611	61611	61611	61611	61611	61611	61611
Messstellenname		RKB3	RKB3	RKB3	RKB3	RKB3	RKB3	RKB3
Grundwasserleiterzuordnur	<u> </u>	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ıg I		16.01.08		24.07.08			27.04.09
Vor-Ort-Parameter		05.07.07	10.01.08	17.04.08	24.07.08	10.11.08	16.02.09	27.04.09
	°C	17 C	0.0	11.0	17.0	12.0	7.1	16.0
Grundwassertemperatur	C	17,6	8,9	11,8	17,3	13,0	7,1	16,8
pH-Wert	-	4	4	4	4	4	4	4
elektr. Leitfähigkeit	μS/cm	8000	7420	7500	7930	4390	5110	5600
Sauerstoff	mg/l	0,0	3,0	3,0	1,2	3,3	4,4	0,6
Redoxspannung	mV	320	259	199	19	280	275	221
KB 4,3 (bei pH<4,3)	mmol/l	0,87	2,4	0,9	1	3,0	2,5	
KS 4,3 (bei pH>4,3)	mmol/l						-	
KB 8,2 (bei pH<8,2)	mmol/l	77,7	27,6	33,2	72,5	32,4	38,7	52,7
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		3,9	3,8	3,8	3,5	3,1	3,7	3,2
elektr. Leitfähigkeit	μS/cm	8100	7360	7760	7950	4900	5022	6030
Gesamttrockenrückstand	mg/l	14000	12500	12800	12500	7170	7690	9430
Filtrattrockenrückstand	mg/l	14000	12500	12300	12400	7090	7630	8670
Karbonathärte	mgCaO/l							
Gesamthärte	mmol/l	18,5	17,1	18,7	19,6	15,4	14,5	16,3
ges. wirksame Acidität	mmol/l	107						
TIC	mg/l	48	96	111	107	55	55	110
DOC	mg/l	7,2	7,1	5,6	5,5	13	9,8	6,4
Ammonium (N)	mg/l	9,49	9,03	10,7	6,2	14,1	7,61	6,06
Nitrat (N)	mg/l	<2,3	0,4	0,6	<0,02	0,70	0,07	0,08
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,007	0,183	<0,007	0,013	0,039	0,042	<0,007
Phosphor gesamt (P)	mg/l	0,93	0,15	0,056	0,081	0,057	0,048	0,110
Sulfat	mg/l	9200	6800	7060	7780	4360	4770	5150
Chlorid	mg/l	169	132	147	210	15,4	23,7	29
Fluorid	mg/l	<0,2					·	
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	0,17	0,06	0,04
Calcium (Ca)	mg/l	410	373	418	423	481	412	416
Magnesium (Mg)	mg/l	202	189	201	220	82,8	102	145
Natrium (Na)	mg/l	28,2	29,3	22,2	25,8	8,2	9,4	19,3
Kalium (K)	mg/l	30	26,1	50,3	54,9	35,8	31,1	34,3
Eisen (Fe), gesamt	mg/l	3170	-,-	- , -	,-	- , -	, , -	,-
Eisen (Fe) gelöst	mg/l	3170	2880	3080	3380	1120	1370	1760
Eisen (2+)	mg/l	3010	2680	2810	3350	1020	1260	1730
Mangan (Mn) gesamt	mg/l	30,1						
Mangan (Mn) gelöst	mg/l	, .	30,1	34,7	32,3	32,2	33,8	27,7
Silizium (Si)	mg/l	57,7	36,8	40,5	40,9	52,2	46,5	42,8
Aluminium (AI)	mg/l	41,2	25,6	75,4	59,3	173	143	86,8
Arsen (As)	mg/l	,_	0,034	0,06	0,072	0,023	0,039	0,048
Blei (Pb)	mg/l		<0,005	0,143	0,072	0,023	0,053	0,048
Cadmium (Cd)	mg/l		0,009	0,005	<0,001	0,001	< 0,000	0,000
Chrom (Cr) ges.	mg/l		<0,009	<0,003	0,05	0,001	0,04	0,001
Kupfer (Cu)	mg/l		<0,01	<0,01	0,03	<0,04	< 0,04	0,04
Nickel (Ni)	mg/l		0,07	0,09	0,01	0,59	0,55	0,01
Zink (Zn)	mg/l		6,99	7,95	5,28	1,92	2,76	3,15
IONENBILANZ	ilig/i		0,99	r ,90	5,20	1,54	2,10	J, 1J
Summe Kationen	mmoleq/l		90,6	100,4	101,6	56,7	60,3	65,1
Summe Anionen	mmoleq/l		89,1	89,6	97,4	52,5	63,0	64,8
	mmoleq/i	0.6						
lonenbilanz-Fehler		-9,6 402	0,9	5,7	2,1	3,8	-2,2	0,2
CSB	mg/l	492						

LMBV VT3 Seite 5 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61611

Markscheidernummer		61611	61611	61611	61611	61611
Messstellenname		RKB3	RKB3	RKB3	RKB3	RKB3
Grundwasserleiterzuordnur	na 	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19	28.07.09	04.11.09		15.02.12	04.09.15
Vor-Ort-Parameter		20.01.09	UT. 1 1.US	10.00.10	10.02.12	UT.UU. IU
Grundwassertemperatur	°C	18,4	9,6	11,6	6,1	16,3
pH-Wert	_	4	4	4	4	4
•	μS/cm	6760	5380	5990	6520	6770
elektr. Leitfähigkeit Sauerstoff						
	mg/l mV	1,9	3,1	2,0	1,9	2,8
Redoxspannung		204	261	225	170	403 2,42
KB 4,3 (bei pH<4,3)	mmol/l	-	3,50	1,40		
KS 4,3 (bei pH>4,3)	mmol/l	- E0.0	64.0	40.7	101 5	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	59,8	64,6	48,7	101,5	31,8
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik		0.7	2.0	0.7	2.0	2.0
pH-Wert	0′	3,7	3,6	3,7	3,9	3,3
elektr. Leitfähigkeit	μS/cm	6800	6290	5990	6730	6790
Gesamttrockenrückstand	mg/l	10300	8920	8730	11200	
Filtrattrockenrückstand	mg/l	9810	7880	8710	10100	
Karbonathärte	mgCaO/l					-
Gesamthärte	mmol/l	17,4	16,1	17,6	19,3	20,9
ges. wirksame Acidität	mmol/l					76,0
TIC	mg/l	120	96	130	180	14
DOC	mg/l	5,0	7,2	3,8	2,6	5,0
Ammonium (N)	mg/l	5,27	8,48	3,25	3,55	4,8
Nitrat (N)	mg/l	0,1	0,2	0,1	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,06	0,05	0,06	0,14	0,07
Phosphor gesamt (P)	mg/l	0,064	0,130	0,110	0,190	0,073
Sulfat	mg/l	5940	4740	4290	6630	5770
Chlorid	mg/l	256	42,6	268	184	178
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	403	480	440	460	436
Magnesium (Mg)	mg/l	175	100	160	190	243
Natrium (Na)	mg/l	62,5	12	39	34	38,1
Kalium (K)	mg/l	25,0	21,0	17,0	22,0	22,9
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	2420	1200	1740	2380	2200
Eisen (2+)	mg/l	2130	1050	1738	2250	2100
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	26,8	31	19	24	25
Silizium (Si)	mg/l	26,4	140	27	23	42
Aluminium (Al)	mg/l	31,6	47	18	24	21
Arsen (As)	mg/l	0,050	0,049	0,064	0,049	0,050
Blei (Pb)	mg/l	0,159	0,008	0,003	0,001	< 0,005
Cadmium (Cd)	mg/l	< 0,001	0,0008	< 0,0002	< 0,0002	< 0,001
Chrom (Cr) ges.	mg/l	0,05	0,015	0,006	0,006	0,057
Kupfer (Cu)	mg/l	0,01	0,017	< 0,001	0,003	< 0,005
Nickel (Ni)	mg/l	0,10	0,61	0,06	0,09	0,08
Zink (Zn)	mg/l	4,99	2,1	3,3	4,4	4,3
IONENBILANZ	<u>J</u> ·	,	,	-,-	, .	, -
Summe Kationen	mmoleq/l	80,1	50,7	68,5	81,1	128,7
Summe Anionen	mmoleq/l	83,4	65,0	62,3	95,0	125,7
Ionenbilanz-Fehler	%	-2,0	-12,3	4,8	-7,9	1,4
CSB	mg/l	2,0	12,0	1,0	,,,,	1, 1
000	1119/1	J.				

LMBV VT3 Seite 6 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61621

Markscheidernummer		61621	61621	61621	61621	61621	61621	61621
Messstellenname		RKB4						
Grundwasserleiterzuordnur	1 <u>g</u>	Ki						
Probenahmedatum		05.07.07	16.01.08	22.04.08	24.07.08	10.11.08	16.02.09	27.04.09
Vor-Ort-Parameter	0.0	40.4	0.0	44.0	45.0	4.4.4		4= 4
Grundwassertemperatur	°C	16,4	8,2	11,2	15,2	14,1	7,3	17,1
pH-Wert	-	4	4	4	4	3	5	4
elektr. Leitfähigkeit	μS/cm	6600	6680	6660	6640	5410	6890	6690
Sauerstoff	mg/l	0,2	4,1	3,8	2,5	2,4	2,5	0,5
Redoxspannung	mV	400	197	153	52	273	168	199
KB 4,3 (bei pH<4,3)	mmol/l	7,84	3,90	4,50	7,50	9,5	-	
KS 4,3 (bei pH>4,3)	mmol/l						0,30	
KB 8,2 (bei pH<8,2)	mmol/l	75,6	35,4	43,1	67,8	73,8	42,9	88,9
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		3,7	3,8	3,8	3,4	3,1	4,0	3,3
elektr. Leitfähigkeit	μS/cm	6800	6680	7190	6840	6910	6940	6790
Gesamttrockenrückstand	mg/l	11000	11220	11100	10600	11300	11360	11800
Filtrattrockenrückstand	mg/l	11000	11200	11000	10600	11100	11240	10900
Karbonathärte	mgCaO/l						8,40	
Gesamthärte	mmol/l	17,1	18,4	19,3	18,3	18,8	21,1	19,2
ges. wirksame Acidität	mmol/l	98,1	, .	, .	, .	. 5,5	, .	, =
TIC	mg/l	30,5	75	86	65	67	78	83
DOC	mg/l	7,7	5,3	4	6	6,5	3,6	5,3
Ammonium (N)	mg/l	4,87	4,39	4,41	5,3	9,13	4,36	5,35
Nitrat (N)	mg/l	149	0,3	0,5	<0,02	0,80	0,04	0,04
Nitrit (N)	mg/l	<0,015	0,3	0,5	₹0,02	0,00	0,04	0,04
Phosphat-ortho (P)	mg/l	0,015	0,114	0,059	0,023	0,01	0,02	0,02
Phosphor gesamt (P)	mg/l	0,013	0,114	0,053	0,023	0,040	0,02	0,02
Sulfat		6710	6500	7010	6550	6810	7060	6625
	mg/l							
Chlorid	mg/l	<50	37,7	63	31	40,8	44,1	44,6
Fluorid	mg/l	<0,2	0.04	0.04	40.04	0.04	0.07	4.4
Sulfid	mg/l	<0,1	0,31	0,61	<0,04	0,04	0,67	1,1
Calcium (Ca)	mg/l	425	392	389	433	420	392	392
Magnesium (Mg)	mg/l	159	209	234	182	203	274	228
Natrium (Na)	mg/l	21,5	29,4	27,5	22,8	23,2	29,1	24,4
Kalium (K)	mg/l	19,7	22,9	41,6	47,3	38,8	20,1	41,8
Eisen (Fe), gesamt	mg/l	2190						
Eisen (Fe) gelöst	mg/l	2190	2390	2210	2390	2370	2390	2200
Eisen (2+)	mg/l	2030	2350	2180	2140	2240	2160	2170
Mangan (Mn) gesamt	mg/l	35,9						
Mangan (Mn) gelöst	mg/l		40,2	39,7	40,3	40,4	40,1	39,1
Silizium (Si)	mg/l	179	31,7	29,7	56,4	47,2	28,7	42,6
Aluminium (AI)	mg/l	53,5	159	148	211	186	132	93,4
Arsen (As)	mg/l		0,01	0,008	0,024	0,032	0,01	0,055
Blei (Pb)	mg/l		<0,005	0,116	0,166	0,099	0,089	0,108
Cadmium (Cd)	mg/l		0,007	<0,001	<0,001	0,001	< 0,001	0,002
Chrom (Cr) ges.	mg/l		1,87	1,71	0,38	0,48	2,47	1,65
Kupfer (Cu)	mg/l		<0,01	<0,01	0,01	0,02	0,01	0,01
Nickel (Ni)	mg/l		0,51	0,43	0,86	0,83	0,94	0,81
Zink (Zn)	mg/l		2,73	3,11	2,81	3,28	2,13	2,27
IONENBILANZ			, -	, -	,	, -	, -	, .
Summe Kationen	mmoleq/l		88,0	80,2	89,6	87,0	88,6	75,0
Summe Anionen	mmoleq/l		80,3	89,3	73,5	79,8	92,8	83,3
Ionenbilanz-Fehler	%	-4,6	4,6	-5,4	9,8	4,3	-2,3	-5,2
CSB	mg/l	359	→,∪	5,4	5,0	٦,٠	۷,0	٥,٢
000	my/i	333						

LMBV VT3 Seite 7 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61621

Markscheidernummer		61621	61621	61621	61621	61621
Messstellenname		RKB4	RKB4	RKB4	RKB4	RKB4
Grundwasserleiterzuordnur	l	KND4 Ki	KND4 Ki	KND4 Ki	KND4 Ki	KND4 Ki
Probenahmedatum	iy	28.07.09	04.11.09		15.02.12	04.09.15
Vor-Ort-Parameter		20.01.08	UT. 11.US	20.03.10	10.02.12	UT.UB. 13
Grundwassertemperatur	°C	18,2	9,8	12.0	5,7	16,1
pH-Wert	U	4	9,0	12,8 3	4	4
•	μS/cm	6980	6970	7120	8540	8750
elektr. Leitfähigkeit Sauerstoff						
	mg/l	1,3	2,5	3,1	1,8	3,0
Redoxspannung	mV	210	242	226	231	372
KB 4,3 (bei pH<4,3)	mmol/l	4,2	5,6	2,3		< 0,05
KS 4,3 (bei pH>4,3)	mmol/l		00.7	50.0	445.7	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	77,5	93,7	59,2	145,7	71,7
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik		0.0	0.4	0.0	2.0	0.0
pH-Wert		3,6	3,4	3,2	3,8	3,6
elektr. Leitfähigkeit	μS/cm	7050	6340	7380	8510	9220
Gesamttrockenrückstand	mg/l	11400	11090	12950	16100	
Filtrattrockenrückstand	mg/l	11200	10680	12250	15100	
Karbonathärte	mgCaO/l			n.b.		-
Gesamthärte	mmol/l	20,3	15,7	20,8	24,1	24,7
ges. wirksame Acidität	mmol/l					138,0
TIC	mg/l	85	61	55	84	11
DOC	mg/l	4,4	7,5	5,1	2,8	5,4
Ammonium (N)	mg/l	4,47	4,62	2,91	3,09	3,5
Nitrat (N)	mg/l	0,3	0,2	0,42	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,07	0,04	0,09	0,06	0,02
Phosphor gesamt (P)	mg/l	1,05	0,06	0,09	0,08	0,02
Sulfat	mg/l	7000	7320	7390	8950	10000
Chlorid	mg/l	55,5	42	31,6	48	57,9
Fluorid	mg/l					
Sulfid	mg/l	1,5	0,04	0,04	0,078	< 0,03
Calcium (Ca)	mg/l	392	400	420	420	408
Magnesium (Mg)	mg/l	256	140	250	330	353
Natrium (Na)	mg/l	45,7	21	42	38	37,4
Kalium (K)	mg/l	22,5	16,0	26,0	21,0	21,0
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	2350	2200	2220	3270	4000
Eisen (2+)	mg/l	2080	1680	2180	2890	4000
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	42,3	32	43	52	57
Silizium (Si)	mg/l	28,6	47	37	19	29
Aluminium (AI)	mg/l	64,3	170	140	170	68
Arsen (As)	mg/l	0,031	0,076	0,065	0,036	0,019
Blei (Pb)	mg/l	0,148	0,026	0,02	0,004	< 0,005
Cadmium (Cd)	mg/l	0,001	0,0011	0,0011	0,0006	< 0,001
Chrom (Cr) ges.	mg/l	2,25	0,3	0,32	0,7	3
Kupfer (Cu)	mg/l	< 0,01	0,031	0,007	0,001	< 0,005
Nickel (Ni)	mg/l	0,62	1	0,81	0,65	1,6
Zink (Zn)	mg/l	1,95	3,5	3,1	4,5	1,8
IONENBILANZ		,,	-,-	-,-	-,-	.,.
Summe Kationen	mmoleq/l	75,8	71,1	80,5	114,5	205,0
Summe Anionen	mmoleq/l	90,0	85,9	92,6	115,3	209,8
Ionenbilanz-Fehler	%	-8,6	-9,4	-7,0	-0,4	-1,2
CSB	mg/l	0,0	ο,-τ	7,0	∪,- 1	٠,٧
000	1119/1	l				

LMBV VT3 Seite 8 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61631

Markscheidernummer		61631	61631	61631	61631	61631	61631	61631
Messstellenname		RKB5	RKB5	RKB5	RKB5	RKB5	RKB5	RKB5
Grundwasserleiterzuordnur	ig	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		19.07.07	21.01.08	21.04.08	30.07.08	12.11.08	17.02.09	23.04.09
Vor-Ort-Parameter	0.0	10.0	5	44.0	45.0	40.0	4 -	44 =
Grundwassertemperatur	°C	10,8	keine PN		15,2	10,9	4,7	11,7
pH-Wert	-	4	GWMS	4	4	4	5	6
elektr. Leitfähigkeit	μS/cm	2570	unter	2490	2450	2520	2500	2460
Sauerstoff	mg/l	0,9	Wasser	3,8	6,1	2,9	1,2	1,5
Redoxspannung	mV	420		215	35	138	233	160
KB 4,3 (bei pH<4,3)	mmol/l	0,2		0				
KS 4,3 (bei pH>4,3)	mmol/l						0,2	0,4
KB 8,2 (bei pH<8,2)	mmol/l	4,56		3,1	9,9	3,1	2,4	3,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		3,9		4,6	3,7	3,8	4,2	4,8
elektr. Leitfähigkeit	μS/cm	2520		2440	2560	2600	2450	2420
Gesamttrockenrückstand	mg/l	2700		2430	2580	2600	2700	2550
Filtrattrockenrückstand	mg/l	2500		2340	2480	2590	2560	2500
Karbonathärte	mgCaO/l			2,8			5,60	11,20
Gesamthärte	mmol/l	15,9		15,3	17,1	16,4	16,6	15,6
ges. wirksame Acidität	mmol/l	1,71		10,0	17,1	10,4	10,0	10,0
TIC	mg/l	20		43	44	45	55	54
DOC		<0,5		2,1	2	1,1	1,1	1,5
Ammonium (N)	mg/l							
` ,	mg/l	0,27		0,16	0,38	0,18	0,58	0,21
Nitrat (N)	mg/l	<0,23		<0,2	<0,02	0,71	< 0,02	0,03
Nitrit (N)	mg/l	<0,015		.0.007	0.040	.0.007	.0.007	.0.007
Phosphat-ortho (P)	mg/l	0,006		<0,007	0,013	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	0,009		0,046	0,019	0,010	0,010	0,053
Sulfat	mg/l	1630		1620	1750	1640	1680	1560
Chlorid	mg/l	52,5		65,6	51,8	58,8	59,3	56,6
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1		<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	530		513	580	551	561	515
Magnesium (Mg)	mg/l	64,4		61,8	64,6	63,6	64	67,2
Natrium (Na)	mg/l	30,2		33,1	29,3	28,1	25,6	33
Kalium (K)	mg/l	3,02		5,5	4,9	4,4	3,2	4,3
Eisen (Fe), gesamt	mg/l	10,9						
Eisen (Fe) gelöst	mg/l	8,33		13,8	13,9	2,67	5,31	7,35
Eisen (2+)	mg/l	8,5		12,1	12,8	0,91	5,14	6,94
Mangan (Mn) gesamt	mg/l	0,14					,	
Mangan (Mn) gelöst	mg/l	,		0,1	0,08	0,07	0,06	0,16
Silizium (Si)	mg/l	10,1		16,9	10,7	10,2	10,6	-,
Aluminium (AI)	mg/l	12,4		7,37	11,5	10,9	12,8	
Arsen (As)	mg/l	· - , ¬		0,015	<0,005	0,010	0,008	
Blei (Pb)	mg/l			0,015	<0,005	<0,005	< 0,005	
Cadmium (Cd)	mg/l			0,003	<0,003	<0,003	< 0,003	
Chrom (Cr) ges.				0,001	0,001	0,001	< 0,001	
	mg/l			<0,01	<0,01	<0,01	< 0,01	
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l			0,16	0,14	0,11	0,08	
Zink (Zn)	mg/l			0,12	0,08	0,12	0,07	
IONENBILANZ				00.0	05 1	04.7	05.4	00.1
Summe Kationen	mmoleq/l			23,3	25,4	24,5	25,1	23,1
Summe Anionen	mmoleq/l			25,2	25,8	24,9	25,7	25,1
Ionenbilanz-Fehler	%	-1,0		-4,0	-0,8	-0,9	-1,2	-4,2
CSB	mg/l	<5						

LMBV VT3 Seite 9 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61631

Markachaidarnummar		61621	61621	61621	61621	61621	61621
Markscheidernummer		61631	61631	61631	61631	61631	61631
Messstellenname		RKB5	RKB5	RKB5	RKB5	RKB5	RKB5
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		28.07.09	11.11.09	20.05.10	16.02.12	16.02.12	04.09.15
Vor-Ort-Parameter							10.0
Grundwassertemperatur	°C	18,3	8,7	12,7	8,2	8,2	13,0
pH-Wert	-	5	5	5	5	5	4
elektr. Leitfähigkeit	μS/cm	2560	2330	2560	2540	2540	2330
Sauerstoff	mg/l	1,5	1,1	1,6	3,2	3,2	2,9
Redoxspannung	mV	159	171	124	264	264	481
KB 4,3 (bei pH<4,3)	mmol/l		-				0,40
KS 4,3 (bei pH>4,3)	mmol/l	0,3	0,5	< 0,1	0,3	0,3	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	5,9	5,4	2,9	6,2	6,2	4,2
KS 8,2 (bei pH>8,2)	mmol/l	-					< 0,05
Laboranalytik							
pH-Wert		4,1	4,8	3,8	4,3	4,3	3,6
elektr. Leitfähigkeit	μS/cm	2560	2270	2570	2570	2570	2320
Gesamttrockenrückstand	mg/l	2720	2140	2860	2840	2840	
Filtrattrockenrückstand	mg/l	2560	2030	2750	2740	2740	
Karbonathärte	mgCaO/l	8,40	14,00	n.b.	8,40	8,40	-
Gesamthärte	mmol/l	16,5	14,9	16,1	17,4	17,4	14,5
ges. wirksame Acidität	mmol/l	- , -	,-	- ,	,	,	2,4
TIC	mg/l	53	46	50	67	67	8,4
DOC	mg/l	1,5	1,9	1,2	1,2	1,2	2,4
Ammonium (N)	mg/l	0,23	0,17	0,067	< 0,05	< 0,05	0,31
Nitrat (N)	mg/l	0,06	0,2	0,39	< 0,05	< 0,05	< 0,1
Nitrit (N)	mg/l	0,00	0,2	0,00	10,00	10,00	. 0, 1
Phosphat-ortho (P)	mg/l	<0,007	<0,007	0,02	0,01	0,01	0,02
Phosphor gesamt (P)	mg/l	0,007	0,007	0,02	1,370	1,370	0,016
Sulfat	mg/l	1690	1520	1670	1850	1850	1480
Chlorid	mg/l	56,3	51,9	56,9	58,5	58,5	45,7
Fluorid	mg/l	30,3	31,9	30,9	30,3	30,3	45,7
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	0,06	0,06	< 0,03
Calcium (Ca)		548	490	530	560	560	
	mg/l	68,3	64			84	475 65
Magnesium (Mg)	mg/l			69	84		65
Natrium (Na)	mg/l	28,8	29	37	34	34	29,9
Kalium (K)	mg/l	4,0	4,9	6,6	5,6	5,6	5,9
Eisen (Fe), gesamt	mg/l	40.0	0.0	7.4	00.0	00.0	04.0
Eisen (Fe) gelöst	mg/l	12,0	3,0	7,4	39,0	39,0	21,0
Eisen (2+)	mg/l	10,4	2,51	7,4	36	36	19
Mangan (Mn) gesamt	mg/l	0.4	0.00		0.40	0.40	0.04
Mangan (Mn) gelöst	mg/l	0,1	0,09	0,055	0,18	0,18	0,24
Silizium (Si)	mg/l	8,17		11	1,1	1,1	7,6
Aluminium (AI)	mg/l	6,98		8,8	11	11	7
Arsen (As)	mg/l	0,011		0,013	0,01	0,01	0,013
Blei (Pb)	mg/l	< 0,05		< 0,001	< 0,001	< 0,001	< 0,005
Cadmium (Cd)	mg/l	< 0,001		< 0,0002	< 0,0002	< 0,0002	< 0,001
Chrom (Cr) ges.	mg/l	0,01		0,008	0,01	0,01	0,009
Kupfer (Cu)	mg/l	< 0,01		0,001	< 0,001	< 0,001	< 0,005
Nickel (Ni)	mg/l	0,16		0,077	0,22	0,22	0,067
Zink (Zn)	mg/l	0,05		0,036	0,12	0,12	0,07
IONENBILANZ							
Summe Kationen	mmoleq/l	23,9	22,0	24,2	26,9	26,9	32,4
Summe Anionen	mmoleq/l	25,3	24,2	25,5	28,1	28,1	32,1
Ionenbilanz-Fehler	%	-2,8	-4,8	-2,6	-2,2	-2,2	0,4
CSB	mg/l						
•	. · ·	-					

LMBV VT3 Seite 10 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61641

Markscheidernummer		61641	61641	61641	61641	61641	61641	61641
Messstellenname		RKB6						
Grundwasserleiterzuordnur	L	Ki						
	ıg I							
Probenahmedatum		19.07.07	21.01.08	17.04.08	30.07.08	12.11.08	17.02.09	23.04.09
Vor-Ort-Parameter	°C	40	0.4	40.4	45.7	44.0	0.0	40.0
Grundwassertemperatur	°C	13	9,4	10,4	15,7	11,2	6,8	12,0
pH-Wert	-	6	6	6	6	6	6	7
elektr. Leitfähigkeit	μS/cm	1950	1754	1775	2050	1906	1358	1992
Sauerstoff	mg/l	0,9	3,8	2,7	4,4	2,6	1,3	1,6
Redoxspannung	mV	460	229	218	-2	35	19	66
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	4,58	2,9	3,5	4,5	4,0	3,7	3,2
KB 8,2 (bei pH<8,2)	mmol/l	5,16	3,0	1,3	4,5	2,4	1,8	2,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		6,2	6,1	6,2	6,2	6,3	6,2	6,3
elektr. Leitfähigkeit	μS/cm	1960	1640	1720	2020	1960	1890	1930
Gesamttrockenrückstand	mg/l	1900	1940	1850	1950	1970	1850	1860
Filtrattrockenrückstand	mg/l	1800	1650	1580	1940	1910	1820	1850
Karbonathärte	mgCaO/l		95,2	100,9	126,2	112	104	90
Gesamthärte	mmol/l	11,9	10,3	10,5	13,5	11,8	11,4	12,0
ges. wirksame Acidität	mmol/l	0,36	,-	,-	,-	,-	,	,
TIC	mg/l	67,8	87	97	121	106	105	82
DOC	mg/l	1,8	3,8	2,7	3,4	2,4	2,3	3,3
Ammonium (N)	mg/l	0,53	0,42	0,48	0,6	0,38	0,95	0,33
Nitrat (N)	mg/l	<0,23	0,3	3,8	<0,02	0,80	0,08	0,20
Nitrit (N)	mg/l	<0,015	0,0	0,0	10,02	0,00	0,00	0,20
Phosphat-ortho (P)	mg/l	0,004	<0,007	<0,007	0,01	<0,007	0,013	<0,007
Phosphor gesamt (P)	mg/l	0,018	0,03	0,014	0,027	<0,005	0,230	0,056
Sulfat	mg/l	950	883	873	1300	983	980	1040
Chlorid	mg/l	67,8	49	55,5	40,3	51,5	45,2	45
Fluorid	mg/l	<0,2	73	55,5	40,5	31,3	45,2	70
Sulfid	mg/l	<0,2	<0,04	<0,04	<0.04	<0,04	0,62	< 0,04
Calcium (Ca)		382	335	340	436	382	366	376
. ,	mg/l	57	47	49,9	63			
Magnesium (Mg)	mg/l					55,3	54,4	64,3
Natrium (Na)	mg/l	22,9	20,4	21,4	20,9	20,5	21,7	22,6
Kalium (K)	mg/l	3,65	3,77	4	5,3	4,4	3,2	3,3
Eisen (Fe), gesamt	mg/l	20,6	00.0	00	07.5	40.4	0.4	40 7
Eisen (Fe) gelöst	mg/l	18,6	28,9	23	27,5	16,4	31	16,7
Eisen (2+)	mg/l	14,5	18,8	22,2	25,1	15,4	30,4	16,5
Mangan (Mn) gesamt	mg/l	2,37	0.50	4 -	4.00	4 =0	4 -	4.00
Mangan (Mn) gelöst	mg/l		2,53	1,5	1,88	1,79	1,5	1,92
Silizium (Si)	mg/l	<0,1						
Aluminium (AI)	mg/l	20,8						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		17,3	17,7	20,6	19,1	19,1	19,2
Summe Anionen	mmoleq/l		17,8	18,3	25,2	19,9	20,6	22,1
Ionenbilanz-Fehler	%	2,9	-1,3	-1,5	-10,0	-1,9	-3,8	-7,0
CSB	mg/l	8,6	ŕ		,		ŕ	
I		,						

LMBV VT3 Seite 11 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61641

Mandanahasidan	1	04044	04044	04044	04044	04044
Markscheidernummer		61641	61641	61641	61641	61641
Messstellenname		RKB6	RKB6	RKB6	RKB6	RKB6
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		28.07.09	11.11.09	20.05.10	16.02.12	04.09.15
Vor-Ort-Parameter						
Grundwassertemperatur	°C	18,4	8,7	13,7	9,6	15,6
pH-Wert	-	6	7	6	6	6
elektr. Leitfähigkeit	μS/cm	1999	1687	2060	1586	1859
Sauerstoff	mg/l	1,7	0,9	1,3	3,5	3,5
Redoxspannung	mV	72	77	63	229	236
KB 4,3 (bei pH<4,3)	mmol/l	-	-			< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	5,5	4,1	4,1	1,8	2,6
KB 8,2 (bei pH<8,2)	mmol/l	6,1	5,1	2,5	4,1	3,8
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik						
pH-Wert		6,3	6,4	6,1	5,9	6,0
elektr. Leitfähigkeit	μS/cm	1970	1640	2040	1720	1800
Gesamttrockenrückstand	mg/l	1900	1390	2140	1850	
Filtrattrockenrückstand	mg/l	1800	1320	1990	1820	
Karbonathärte	mgCaO/l	154,2	115	115	50,5	72,06
Gesamthärte	mmol/l	12,2	10,7	12,8	10,6	11,8
ges. wirksame Acidität	mmol/l	,	,	,	,	-2,2
TIC	mg/l	120	89	110	50	44
DOC	mg/l	3,0	2,0	2,7	1,6	4,0
Ammonium (N)	mg/l	0,46	0,27	0,198	0,33	0,37
Nitrat (N)	mg/l	0,2	0,05	0,4	< 0,05	< 0,1
Nitrit (N)	mg/l	<u> </u>	0,00	O , .	0,00	•, .
Phosphat-ortho (P)	mg/l	0,01	<0,007	0,02	<0,007	0,04
Phosphor gesamt (P)	mg/l	0,30	0,09	0,40	0,45	0,04
Sulfat	mg/l	913	825	1080	1130	1030
Chlorid	mg/l	29,4	35,1	28,1	57,6	27,3
Fluorid	mg/l	20, .	00,1	20, 1	01,0	2.,0
Sulfid	mg/l	< 0,04	< 0,04	0,09	0,16	
Calcium (Ca)	mg/l	384	340	400	350	392
Magnesium (Mg)	mg/l	64,0	53,0	68,0	45,0	48,0
Natrium (Na)	mg/l	22,6	22	26	22	20,6
Kalium (K)	mg/l	4,4	4,7	6,1	4,9	5,2
Eisen (Fe), gesamt	mg/l	-,, -	.,,	0,1	1,0	0,2
Eisen (Fe) gelöst	mg/l	15,2	3,52	21	64	34
Eisen (2+)	mg/l	10,4	2,79	20,8	58	30
Mangan (Mn) gesamt	mg/l	10,1	2,70	20,0	- 00	
Mangan (Mn) gelöst	mg/l	3,7	1,7	2,1	1,3	1,2
Silizium (Si)	mg/l	5,1	1,1	۷, ۱	1,0	1,2
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	-					
Zink (Zn)	mg/l					
IONENBILANZ	mg/l					
	mmolog/I	16.0	17.6	20.6	10 0	25.0
Summe Kationen	mmoleq/l	16,8	17,6	20,6	18,0	25,9
Summe Anionen	mmoleq/l	17,7	18,9	20,7	20,7	24,8
lonenbilanz-Fehler	% ma/l	5,8	-3,5	-0,3	-6,9	2,2
CSB	mg/l					<u> </u>

LMBV VT3 Seite 12 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61651

Markashaidarnummar		61651	61651	61651	61651	61651	61651	61651
Markscheidernummer		61651	61651	61651	61651	61651	61651	61651
Messstellenname		RKB7	RKB7	RKB7	RKB7	RKB7	RKB7	RKB7
Grundwasserleiterzuordnur	ıg	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		12.07.07	20.01.08	17.04.08	28.07.08	06.11.08	12.02.09	22.04.09
Vor-Ort-Parameter	°C	44.5	-	0	47	40.0	5 0	40.0
Grundwassertemperatur	°C	11,5	7	9	17	10,9	5,8	13,6
pH-Wert	-	7	7	7	7	7	7	7
elektr. Leitfähigkeit	μS/cm	1700	1671	2080	2010	1893	1931	2180
Sauerstoff	mg/l	1,8	3,7	2,6	6,0	2,1	2,3	1,4
Redoxspannung	mV	200	103	148	-1	70	148	11
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	4,14	3,10	4,30	4,50	4,0	4,2	5,9
KB 8,2 (bei pH<8,2)	mmol/l	1,2	1,00	0,30	2,20	1,0	6,9	2,1
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		6,8	6,8	6,7	6,7	6,8	6,8	6,7
elektr. Leitfähigkeit	μS/cm	1710	1660	1970	2040	1900	1920	2080
Gesamttrockenrückstand	mg/l	1600	1940	1730	1800	1770	1770	1710
Filtrattrockenrückstand	mg/l	1600	1520	1710	1750	1750	1740	1700
Karbonathärte	mgCaO/l		106,4	134,6	126,2	112	118	165
Gesamthärte	mmol/l	10,5	11,1	13,1	13,7	11,5	12,4	14,2
ges. wirksame Acidität	mmol/l	<1						
TIC	mg/l	43,9	69	77	78	72	76	91
DOC	mg/l	1	2,8	2,6	2,2	1,3	1,7	1,7
Ammonium (N)	mg/l	0,18	0,07	0,19	0,46	0,14	0,19	0,22
Nitrat (N)	mg/l	<0,23	3	<0,02	<0,02	0,80	< 0,02	0,20
Nitrit (N)	mg/l	<0,015		,	,	,	,	,
Phosphat-ortho (P)	mg/l	<0,002	0,01	<0,007	0,01	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,002	0,09	0,11	0,23	0,280	0,071	0,270
Sulfat	mg/l	809	734	948	1000	801	936	1000
Chlorid	mg/l	58,6	67,8	99,4	87,4	82,9	81,7	94,3
Fluorid	mg/l	0,86	,	,	,	,	,	,
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0.04	< 0,04
Calcium (Ca)	mg/l	354	376	442	467	387	415	477
Magnesium (Mg)	mg/l	41,6	41,2	49,6	49,3	46,0	49,4	55,2
Natrium (Na)	mg/l	19	17,9	20,6	20,6	17,7	17,2	21,6
Kalium (K)	mg/l	2,29	3,64	3,3	3,6	3,2	3,1	3,3
Eisen (Fe), gesamt	mg/l	10,5	2, ~ !	-,-	-,-	~, -	•, .	-,-
Eisen (Fe) gelöst	mg/l	9,02	1,5	12,1	13,3	6,33	8,4	10,9
Eisen (2+)	mg/l	7,7	<0,01	11,2	12	6,06	8,11	10,8
Mangan (Mn) gesamt	mg/l	0,66	5,01	,=	.=	5,50	5 , 1 1	. 5,0
Mangan (Mn) gelöst	mg/l	3,00	0,85	0,48	0,62	0,43	0,59	0,48
Silizium (Si)	mg/l	<0,1	0,00	3,40	5,02	5,40	0,00	5,40
Aluminium (Al)	mg/l	10,4						
Arsen (As)	mg/l	10,7						
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	•							
IONENBILANZ	mg/l							
	mmole a //		10 F	24.2	24.0	10.0	20.4	22.7
Summe Kationen	mmoleq/l		18,5	21,3	21,8	19,0	20,1	22,7
Summe Anionen	mmoleq/l	٥.	16,3	21,5	21,1	18,6	20,8	21,6
lonenbilanz-Fehler	%	2,5	6,4	-0,5	1,7	1,1	-1,7	2,6
CSB	mg/l	5,1						

LMBV VT3 Seite 13 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61651

Mandan da si da manana an	1	04054	04054	04054	04054	04054
Markscheidernummer		61651	61651	61651	61651	61651
Messstellenname		RKB7	RKB7	RKB7	RKB7	RKB7
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		23.07.09	10.11.09	20.05.10	22.02.12	04.09.15
Vor-Ort-Parameter						
Grundwassertemperatur	°C	19,3	9,4	12,2	10,9	12,9
pH-Wert	-	7	6	7	7	7
elektr. Leitfähigkeit	μS/cm	2040	2080	2550	2200	2394
Sauerstoff	mg/l	1,5	0,7	1,5	1,6	1,6
Redoxspannung	mV	24	66	61	43	168
KB 4,3 (bei pH<4,3)	mmol/l	-				< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	4,5	4,8	6,3	6,3	5,8
KB 8,2 (bei pH<8,2)	mmol/l	1,4	4,4	0,9	0,9	1,7
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik						
pH-Wert		6,8	6,8	6,6	6,8	7,2
elektr. Leitfähigkeit	μS/cm	2030	1990	2430	2230	2340
Gesamttrockenrückstand	mg/l	1770	1730	2720	2430	
Filtrattrockenrückstand	mg/l	1740	1710	2470	2150	
Karbonathärte	mgCaO/l	126,2	134,6	176,7	176,7	163,19
Gesamthärte	mmol/l	12,7	13,8	16,8	16,1	15,7
ges. wirksame Acidität	mmol/l	12,7	10,0	10,0	10,1	-5,4
TIC	mg/l	81	71	98	99	77
DOC	mg/l	1,7	1,9	1,8	1,9	2,8
Ammonium (N)	mg/l	0,097	< 0,05	0,099	0,18	0,54
Nitrat (N)	mg/l	0,05	0,03	0,099	< 0,05	< 0,1
Nitrit (N)		0,03	0,07	0,42	~ 0,03	\ 0,1
	mg/l	<0.007	<0.007	0.01	0.04	0.04
Phosphar goomt (P)	mg/l	<0,007	<0,007	0,01	0,01	0,01
Phosphor gesamt (P)	mg/l	0,30	0,15	0,33	0,57	0,02
Sulfat	mg/l	970	953	1160	1120	1230
Chlorid	mg/l	83,6	85,1	105	82,2	69,5
Fluorid	mg/l	0.04	0.04	0.4=	0.00	
Sulfid	mg/l	< 0,04	< 0,04	0,17	0,08	
Calcium (Ca)	mg/l	435	470	560	540	525
Magnesium (Mg)	mg/l	44,0	50,0	68,0	64,0	62,2
Natrium (Na)	mg/l	17,7	20	30	24	24,6
Kalium (K)	mg/l	3,4	2,8	7,6	2,8	6,6
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	8,89	0,18	14	19	14
Eisen (2+)	mg/l	7,43	0,1	14	15,6	13
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	0,38	0,58	0,516	0,56	0,77
Silizium (Si)	mg/l					
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	<u>J</u> ·					
Summe Kationen	mmoleq/l	19,8	22,1	27,0	26,0	33,1
Summe Anionen	mmoleq/l	20,4	18,9	24.40	23,4	33,4
Ionenbilanz-Fehler	%	-1,5	-7,9	5,1	5,3	-0,4
CSB	mg/l	.,0	. ,0	٥, ١	0,0	J, !
000	1119/1]

LMBV VT3 Seite 14 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61661

Markscheidernummer		61661	61661	61661	61661	61661	61661	61661
Messstellenname		RKB8						
Grundwasserleiterzuordnur	ig I	Ki						
Probenahmedatum		26.07.07	17.01.08	22.04.08	31.07.08	12.11.08	19.02.09	27.04.09
Vor-Ort-Parameter	0.0	40.5	0.0	0.5	45.0	40.0	0.5	45.0
Grundwassertemperatur	°C	10,5	9,3	9,5	15,3	10,8	6,5	15,0
pH-Wert	-	4	3	4	4	4	4	4
elektr. Leitfähigkeit	μS/cm	3030	2830	3020	2840	2860	3260	2930
Sauerstoff	mg/l	6,1	3,7	4,7	6,2	3,0	2,9	1,9
Redoxspannung	mV	450	355	268	115	274	370	334
KB 4,3 (bei pH<4,3)	mmol/l	0,34	1,9	3,5	0,8	0,9	1,4	
KS 4,3 (bei pH>4,3)	mmol/l						-	
KB 8,2 (bei pH<8,2)	mmol/l	12,5	9,1	11,4	9,3	8,9	10,7	15,2
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		4,0	3,1	3,1	3,0	3,1	3,2	3,0
elektr. Leitfähigkeit	μS/cm	3100	2740	3180	2900	2900	3240	3010
Gesamttrockenrückstand	mg/l	3600	3250	3650	3180	3350	4200	3610
Filtrattrockenrückstand	mg/l	3600	3000	3520	3140	3330	3710	3480
Karbonathärte	mgCaO/l			-	-			
Gesamthärte	mmol/l	14,8	12,1	16	15,2	13,4	15,3	14,2
ges. wirksame Acidität	mmol/l	17,8	,.		, _		, .	,_
TIC	mg/l	17,1	24	50	49	41	22	57
DOC	mg/l	7,9	5,3	4	5,8	4,9	5,4	5,1
Ammonium (N)	mg/l	2,61	2,47	2,62	2,61	2,49	2,64	2,76
Nitrat (N)	mg/l	<0,23	0,3	0,3	<0,02	0,85	0,03	0,08
Nitrit (N)	mg/l	<0,25	0,5	0,5	₹0,02	0,00	0,03	0,00
Phosphat-ortho (P)	mg/l	0,009	0,14	<0,007	0,01	0,03	<0,007	0,008
Phosphor gesamt (P)	mg/l	<0,2	0,14	0,007	0,017	0,03	0,052	0,008
Sulfat				2540		2050	2470	2180
	mg/l	2360	1940		2090			
Chlorid	mg/l	12	15,9	19,4	13,9	23,5	13,9	26
Fluorid	mg/l	<0,2	40.04	40.04	40.04	0.05	0.00	4 0 04
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	0,05	0,08	< 0,04
Calcium (Ca)	mg/l	500	415	557	521	466	497	478
Magnesium (Mg)	mg/l	57,7	41,8	50,5	53,1	42,9	69,3	54,4
Natrium (Na)	mg/l	11,9	7,41	8,2	12,1	9,9	7,8	10,8
Kalium (K)	mg/l	10,8	8,57	16,6	9,9	10,9	9,7	10,5
Eisen (Fe), gesamt	mg/l	395						
Eisen (Fe) gelöst	mg/l	395	199	367	243	307	385	341
Eisen (2+)	mg/l	366	156	350	200	231	342	319
Mangan (Mn) gesamt	mg/l	8,24						
Mangan (Mn) gelöst	mg/l		4,93	6,49	5,8	6,04	9,5	5,92
Silizium (Si)	mg/l	30,3	37,3	32,1	44,3	37,4	17,3	41,6
Aluminium (AI)	mg/l	25,4	44,3	37,9	40,5	33,9	31,7	38
Arsen (As)	mg/l		<0,005	<0,005	0,016	0,018	0,017	0,028
Blei (Pb)	mg/l		<0,005	0,032	0,015	0,023	0,028	0,022
Cadmium (Cd)	mg/l		0,003	0,001	0,001	<0,001	0,003	0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	0,01	0,02	0,05	0,02
Kupfer (Cu)	mg/l		0,01	<0,01	<0,01	0,01	0,06	0,01
Nickel (Ni)	mg/l		0,46	0,48	0,52	0,57	0,68	0,59
Zink (Zn)	mg/l		1,03	1,14	1,11	1,49	1,74	1,43
IONENBILANZ	J .		,	, -	, -	, -	, .	, -
Summe Kationen	mmoleq/l		25,5	32,8	26,6	28,7	32,5	29,9
Summe Anionen	mmoleq/l		26,8	35,4	25,8	28,3	34,5	30,3
Ionenbilanz-Fehler	%	-2,0	-2,5	-3,8	1,6	0,7	-3,0	-0,6
CSB	mg/l	69,2	۷,0	0,0	1,0	0,1	0,0	5,0
000	my/i	09,∠						

LMBV VT3 Seite 15 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61661

Mandanahasidan	1	04004	04004	04004	04004	04004
Markscheidernummer		61661	61661	61661	61661	61661
Messstellenname		RKB8	RKB8	RKB8	RKB8	RKB8
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		28.07.09	11.11.09	26.05.10	16.02.12	13.08.15
Vor-Ort-Parameter						
Grundwassertemperatur	°C	19,2	8,8	13,8	8,1	13,0
pH-Wert	-	5	4	4	4	4
elektr. Leitfähigkeit	μS/cm	2920	3140	2980	2780	3250
Sauerstoff	mg/l	2,5	1,5	2,2	1,9	2,5
Redoxspannung	mV	326	317	208	226	539
KB 4,3 (bei pH<4,3)	mmol/l	-	1,10			0,28
KS 4,3 (bei pH>4,3)	mmol/l	-	-		0,3	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	14,2	20,7	9,7	14,8	16,1
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik						
pH-Wert		3,0	3,3	3,5	4,2	3,6
elektr. Leitfähigkeit	μS/cm	3030	3070	3050	2800	3530
Gesamttrockenrückstand	mg/l	3270	3400	4100	3170	
Filtrattrockenrückstand	mg/l	3250	3340	3990	3050	
Karbonathärte	mgCaO/l		n.b.	n.b.	8,4	-
Gesamthärte	mmol/l	14,0	14,9	13,8	15,4	17,4
ges. wirksame Acidität	mmol/l				·	18,9
TIC	mg/l	41	45	72	39	4,9
DOC	mg/l	5,5	5,2	4,6	5,1	3,6
Ammonium (N)	mg/l	2,67	2,5	2,78	3,44	2,6
Nitrat (N)	mg/l	0,1	0,2	0,46	< 0,05	< 0,1
Nitrit (N)	mg/l	-,.	-,-	-,	-,,,,	-,.
Phosphat-ortho (P)	mg/l	0,02	0,08	0,02	0,01	< 0,005
Phosphor gesamt (P)	mg/l	0,079	0,130	0,110	0,230	< 0,005
Sulfat	mg/l	2140	2290	1900	2440	3040
Chlorid	mg/l	21,5	16,3	16,9	19,2	9,8
Fluorid	mg/l	21,0	10,0	10,0	10,2	0,0
Sulfid	mg/l	< 0,04	< 0,04	0,04	0,14	< 0,03
Calcium (Ca)	mg/l	498	510	460	530	513
Magnesium (Mg)	mg/l	54,8	54	56	52	113
Natrium (Na)	mg/l	9,3	11	9,9	8	9,3
Kalium (K)	mg/l	9,2	8,7	8,7	8,2	16,4
Eisen (Fe), gesamt	mg/l	0,2	0,1	0,1	0,2	10, 1
Eisen (Fe) gelöst	mg/l	269	330	310	300	490
Eisen (2+)	mg/l	246	222	310	280	490
Mangan (Mn) gesamt	mg/l	2.10		010	200	100
Mangan (Mn) gelöst	mg/l	5,37	6,1	6,4	6,1	13
Silizium (Si)	mg/l	31,4	40	34	23	15
Aluminium (Al)	mg/l	37,6	37,3	21	43	20
Arsen (As)	mg/l	0,021	0,012	0,02	0,02	0,007
Blei (Pb)	mg/l	0,021	0,012	< 0,02	0,002	< 0,007
Cadmium (Cd)	mg/l	0,019	0,003	0,0005	0,002	< 0,003
Chrom (Cr) ges.	mg/l	0,001	0,0008	0,0003	0,0007	0,001
Kupfer (Cu)	mg/l	0,01	0,014	0,002	0,005	0,012
Nickel (Ni)		0,61	0,014	0,002	0,001	0,05
Zink (Zn)	mg/l	1,64	1,3	1,07	1,3	1,9
IONENBILANZ	mg/l	1,04	۱,٥	1,07	۱,٥	1,9
	mmolog/I	20.4	21.2	20.7	20.4	56.0
Summe Kationen	mmoleq/l	28,1	31,2	28,7	30,4	56,9
Summe Anionen	mmoleq/l	28,9	31,4	26,6	34,6	63,6
lonenbilanz-Fehler	% ma/l	-1,3	-0,3	3,9	-6,4	-5,5
CSB	mg/l					

LMBV VT3 Seite 16 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61671

Markachaidaraumanar		64674	64674	61671	61671	61671	61671	61671
Markscheidernummer		61671	61671	61671	61671	61671	61671	61671
Messstellenname		RKB9	RKB9	RKB9	RKB9	RKB9	RKB9	RKB9
Grundwasserleiterzuordnur	าg	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		26.07.07	21.01.08	24.04.08	31.07.08	12.11.08	19.02.09	27.04.09
Vor-Ort-Parameter				10.0				
Grundwassertemperatur	°C	11,3	8,2	12,3	14,5	11,1	6,6	15,2
pH-Wert	-	6	6	6	6	6	6	6
elektr. Leitfähigkeit	μS/cm	4100	4680	4530	4660	4440	4130	3680
Sauerstoff	mg/l	1,3	2,1	3,8	3,4	2,1	2,3	1,2
Redoxspannung	mV	375	37	147	-10	73	77	5
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	6,64	7,1	8,5	8,8	8,2	4,7	6,7
KB 8,2 (bei pH<8,2)	mmol/l	37,5	16,3	17,8	18,0	18,4	12,4	17,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,9	5,9	5,9	5,8	5,9	5,6	5,6
elektr. Leitfähigkeit	μS/cm	5080	4190	4490	4440	4510	5260	2900
Gesamttrockenrückstand	mg/l	4200	5730	5780	5890	5960	8000	3320
Filtrattrockenrückstand	mg/l	4000	5700	5630	5810	5720	5140	3160
Karbonathärte	mgCaO/l		218,4	218,7	246,8	229,9	131,8	187,9
Gesamthärte	mmol/l	22,9	22,1	22	23,1	22,3	21,9	22,6
ges. wirksame Acidität	mmol/l	34,5	, .			,	, _	,
TIC	mg/l	185	147	154	263	239	164	200
DOC	mg/l	8,7	12	8,8	8,8	9,3	7,8	5,5
Ammonium (N)	mg/l	6,18	5,17	4,49	4,99	4,02	4,40	3,32
Nitrat (N)	mg/l	<0,10	0,4	<0,02	0,5	0,73	0,03	< 0,02
Nitrit (N)	mg/l	<0,25	0,4	\0,02	0,5	0,73	0,03	₹ 0,02
Phosphat-ortho (P)	mg/l	0,012	0,023	0,023	<0,007	0,007	0,010	<0,007
Phosphor gesamt (P)	mg/l	<0,012	0,023	0,023	0,007	0,007	0,010	0,007
Sulfat		4980	3350	3140	3990	3300	3240	2510
	mg/l							
Chlorid	mg/l	23,5	30,7	29	22,4	24,7	23,0	26,1
Fluorid	mg/l	<0,2	40.04	40.04	40.04	40.04	1001	4 0 04
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	601	521	520	562	530	548	548
Magnesium (Mg)	mg/l	191	221	220	221	220	201	217
Natrium (Na)	mg/l	32,5	29,1	24,7	27,1	23,7	26,4	24,9
Kalium (K)	mg/l	11,3	12,7	20	14,2	20,4	13,3	15,2
Eisen (Fe), gesamt	mg/l	1780						
Eisen (Fe) gelöst	mg/l	388	878	954	922	873	761	443
Eisen (2+)	mg/l	1630	870	884	895	785	678	426
Mangan (Mn) gesamt	mg/l	29,3						
Mangan (Mn) gelöst	mg/l		11,9	11,8	15,2	13,1	11,9	6,3
Silizium (Si)	mg/l	<0,1						
Aluminium (AI)	mg/l	13,2						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l					-		
Chrom (Cr) ges.	mg/l					-		
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		51,9	53,1	49,3	50,4	47,9	42,0
Summe Anionen	mmoleq/l		49,9	46,4	65,9	51,4	50,8	39,5
Ionenbilanz-Fehler	%	-0,9	2,0	6,7	-14,4	-1,0	-3,0	3,0
CSB	mg/l	241	2,0	0,1	1-7,77	1,0	5,0	0,0
000	my/i	Z+1						

LMBV VT3 Seite 17 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61671

Manka ala si da wa unawa an		04074	04074	04074	04074	04074
Markscheidernummer		61671	61671	61671	61671	61671
Messstellenname		RKB9	RKB9	RKB9	RKB9	RKB9
Grundwasserleiterzuordnur	ng	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		30.07.09	11.11.09	26.05.10	16.02.12	10.08.15
Vor-Ort-Parameter						
Grundwassertemperatur	°C	18,9	9,1	13,6	8,7	keine PN
pH-Wert	-	6	6	6	6	
elektr. Leitfähigkeit	μS/cm	4790	4700	4760	4670	
Sauerstoff	mg/l	0,9	1,0	1,5	1,8	
Redoxspannung	mV	40	0	56	129	
KB 4,3 (bei pH<4,3)	mmol/l		-			
KS 4,3 (bei pH>4,3)	mmol/l	7,3	4,3	7,1	6,9	
KB 8,2 (bei pH<8,2)	mmol/l	36,2	34,1	20,5	47,7	
KS 8,2 (bei pH>8,2)	mmol/l					
Laboranalytik						
pH-Wert		5,8	6,0	5,8	5,9	
elektr. Leitfähigkeit	μS/cm	4720	4750	4820	4940	
Gesamttrockenrückstand	mg/l	6420	6390	7590	7270	
Filtrattrockenrückstand	mg/l	6380	5940	7370	6540	
Karbonathärte	mgCaO/l	204,7	120,6	199,1	193,5	
Gesamthärte	mmol/l	21,4	21,8	20,9	22,2	
ges. wirksame Acidität	mmol/l	,.	, _			
TIC	mg/l	260	270	240	200	
DOC	mg/l	8,3	7,2	8,7	7,4	
Ammonium (N)	mg/l	4,54	3,79	4,9	4,46	
Nitrat (N)	mg/l	0,1	0,04	0,56	< 0,05	
Nitrit (N)	mg/l	0, 1	0,04	0,50	\ 0,03	
Phosphat-ortho (P)	mg/l	0,02	<0,007	<0,007	<0,007	
Phosphor gesamt (P)		0,02	0,38	0,14	0,007	
Sulfat	mg/l	3520	3570	3550	4370	
Chlorid	mg/l					
	mg/l	28,8	23,8	27,8	30,3	
Fluorid	mg/l	1001	. 0 0 4	. 0 0 4	1001	
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	479	510	490	510	
Magnesium (Mg)	mg/l	230	220	210	230	
Natrium (Na)	mg/l	27,6	28,0	26,0	25,0	
Kalium (K)	mg/l	13,6	15,0	13,0	17,0	
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	1010	940	924	1190	
Eisen (2+)	mg/l	904	674	917	1140	
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	16,3	15	15	19	
Silizium (Si)	mg/l					
Aluminium (AI)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	<u>J</u> ·					
Summe Kationen	mmoleq/l	50,3	49,5	49,0	57,4	
Summe Anionen	mmoleq/l	51,8	56,7	56,7	65,1	
Ionenbilanz-Fehler	%	-1,4	-6,8	-7,4	-6,3	
CSB	mg/l	1,-7	0,0	7,-7	0,0	
000	my/i					l

LMBV VT3 Seite 18 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61681

Markashaidarnummar		61681	61681	61681	61681	61681	61681	61681
Markscheidernummer Magastallannama		RKB10	RKB10	RKB10	RKB10	RKB10		RKB10
Messstellenname Grundwasserleiterzuordnur	<u> </u>	Ki	Ki	Ki	Ki	Ki	RKB10 Ki	Ki
Probenahmedatum	ıg I	26.07.07	09.01.08	22.04.08	31.07.08		18.02.09	28.04.09
Vor-Ort-Parameter		20.07.07	09.01.06	22.04.00	31.07.00	13.11.00	10.02.09	20.04.09
Grundwassertemperatur	°C	11 E	9,2	11,5	17.1	10.1	5,5	14.0
	C	11,5			17,1	10,1	5,5 5	14,9
pH-Wert	-	4	4	4	5	4		5
elektr. Leitfähigkeit	μS/cm	4210	4080	4310	4520	4490	4490	4500
Sauerstoff	mg/l	2,1	2,6	3,6	5,4	6,4	1,6	1,1
Redoxspannung	mV	410	195	206	27	241	215	185
KB 4,3 (bei pH<4,3)	mmol/l	0.00					0.00	0.00
KS 4,3 (bei pH>4,3)	mmol/l	0,09	40.5	40.0	00.0	40.0	0,30	0,30
KB 8,2 (bei pH<8,2)	mmol/l	21,7	13,5	18,2	28,2	16,6	19,7	26,5
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert	<u> </u>	4,4	4,7	4,1	3,3	3,4	4,3	3,9
elektr. Leitfähigkeit	μS/cm	4200	3150	4560	4640	4560	4510	4390
Gesamttrockenrückstand	mg/l	5400	5480	5440	5820	6000	6140	6310
Filtrattrockenrückstand	mg/l	5400	5400	5420	5810	5990	5920	6100
Karbonathärte	mgCaO/l						8,40	8,40
Gesamthärte	mmol/l	18,8	18	20,2	21,5	21,3	20,7	20,0
ges. wirksame Acidität	mmol/l	27,5						
TIC	mg/l	54,8	89	79	75	83	82	89
DOC	mg/l	2,7	6	2,7	3,1	2,5	2,4	2,6
Ammonium (N)	mg/l	2,02	1,85	1,91	2,59	1,79	2,46	2,86
Nitrat (N)	mg/l	<0,23	0,4	<0,02	0,4	0,70	0,03	0,10
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,007	0,026	0,016	<0,007	0,012	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,03	0,063	0,029	0,040	0,010	0,087
Sulfat	mg/l	3310	3170	3400	3820	3720	3790	3750
Chlorid	mg/l	54	53,5	46,2	39,7	38,7	37,4	44,2
Fluorid	mg/l	<0,2	·					
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	473	416	439	478	463	445	423
Magnesiùm (Mg)	mg/l	171	186	225	232	237	232	229
Natrium (Na)	mg/l	34,6	33,5	29,3	30,1	30,6	29,9	23,6
Kalium (K)	mg/l	11,3	18,9	18,3	11,6	19,9	10,5	19,2
Eisen (Fe), gesamt	mg/l	817	-,-	, -	,-	,-	,-	,
Eisen (Fe) gelöst	mg/l	791	861	832	904	948	939	1010
Eisen (2+)	mg/l	679	723	810	880	836	895	912
Mangan (Mn) gesamt	mg/l	27,3	-	-				
Mangan (Mn) gelöst	mg/l	,-	31,6	37,3	42,1	39,0	45,2	41,0
Silizium (Si)	mg/l	4,89	9,99	9,97	11,2	9,79	9,48	11,2
Aluminium (AI)	mg/l	9,63	5,79	7,22	8,82	8,03	9,14	8,63
Arsen (As)	mg/l	-,	0,01	0,006	0,008	<0,005	0,009	< 0,005
Blei (Pb)	mg/l		<0,005	<0,005	0,053	0,040	0,041	0,045
Cadmium (Cd)	mg/l		0,003	0,002	0,001	<0,001	< 0,001	0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	0,02	0,02	0,02	0,02
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,01	<0,01	< 0,02	0,01
Nickel (Ni)	mg/l		<0,01	<0,01	0,01	<0,01	< 0,01	< 0,01
Zink (Zn)	mg/l		0,79	0,78	1,05	0,84	0,77	0,71
IONENBILANZ	1119/1		5,75	3,70	1,00	5,04	5,11	5,7 1
Summe Kationen	mmoleq/l		48,0	48,8	49,5	53,1	52,4	50,7
Summe Anionen	mmoleq/l		45,3	46,7	50,9	51,4	53,7	51,4
Ionenbilanz-Fehler	%	_3 7	2,9	2,2	-1,4	1,6	-1,3	-0,9
CSB		-3,7 117	۷,۶	۷,۷	-1,4	1,0	-1,3	-0,9
USB	mg/l	117						

LMBV VT3 Seite 19 von 50

Witznitz Messplatz Kippe Zeitreihen / RKB Pleisse

Messstelle 61681

Markscheidernummer		61681	61681	61681	61681	61681
Messstellenname		RKB10	RKB10	RKB10	RKB10	RKB10
Grundwasserleiterzuordnur	l na	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	30.07.09	02.11.09	03.11.09	16.02.11	13.08.15
Vor-Ort-Parameter		30.07.03	02.11.03	03.11.03	10.02.11	13.00.13
Grundwassertemperatur	°C	19,0	10,7	13,5	6,5	13,5
pH-Wert		5	5	4	5	4
•	μS/cm	4640	4760	4740	4420	4100
elektr. Leitfähigkeit Sauerstoff	•					
	mg/l mV	1,6	1,6	1,8	1,9	3,5
Redoxspannung		215	193	284	204	460
KB 4,3 (bei pH<4,3)	mmol/l	0.0	0.0	1,00	0.0	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	0,2	0,3	40.4	0,2	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	32,4	36,6	18,1	43,8	27,9
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik						
pH-Wert		3,8	4,2	3,5	4,3	3,7
elektr. Leitfähigkeit	μS/cm	4660	4610	4730	4490	4460
Gesamttrockenrückstand	mg/l	6350	6540	6860	6740	
Filtrattrockenrückstand	mg/l	6340	6390	6300	5760	
Karbonathärte	mgCaO/l	5,60	8,40	n.b.	5,60	-
Gesamthärte	mmol/l	19,2	20,3	17,3	18,1	19,2
ges. wirksame Acidität	mmol/l					31,7
TIC	mg/l	84	77	74	74	20
DOC	mg/l	2,7	2,5	2,9	2,3	4,3
Ammonium (N)	mg/l	1,95	1,77	1,94	1,9	2,9
Nitrat (N)	mg/l	0,1	0,05	0,063	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,01	<0,007	<0,007	<0,007	0,016
Phosphor gesamt (P)	mg/l	0,039	0,027	0,050	0,150	0,016
Sulfat	mg/l	3640	4000	3840	4130	3260
Chlorid	mg/l	43,7	46,2	34,9	45,0	35,7
Fluorid	mg/l	,	,	,	,	,
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	0,05	< 0,03
Calcium (Ca)	mg/l	433	500	430	460	489
Magnesium (Mg)	mg/l	205	190	160	160	169
Natrium (Na)	mg/l	23,0	26,0	25,0	25,0	21,9
Kalium (K)	mg/l	10,6	11,0	10,0	11,0	32,4
Eisen (Fe), gesamt	mg/l	10,0	11,0	10,0	11,0	02,1
Eisen (Fe) gelöst	mg/l	1020	1100	1040	1110	940
Eisen (2+)	mg/l	928	748	1040	1060	880
Mangan (Mn) gesamt	mg/l	020	7 10	1010	1000	000
Mangan (Mn) gelöst	mg/l	40,8	40	32	31	29
Silizium (Si)	mg/l	7,37	11	9,9	31	21
Aluminium (Al)	mg/l	8,34	5,8	5,8		18
Arsen (As)	mg/l	< 0,005	0,007	0,004		0,02
Blei (Pb)	mg/l	0,003	0,007	0,004		< 0,02
Cadmium (Cd)	mg/l	< 0,078	< 0,001	0,0002		< 0,003
Chrom (Cr) ges.	mg/l	0,001	0,0002	< 0,0002		0,005
Kupfer (Cu)	mg/l	0,02	0,001	0,001		0,005
Nickel (Ni)						
. ,	mg/l	< 0,01	0,004	0,008		0,035
Zink (Zn)	mg/l	1,00	0,88	1,00		0,94
IONENBILANZ	mmala : //	40.0	E2 O	47.0	EO O	70.7
Summe Kationen	mmoleq/l	49,2	53,9	47,2	50,3	78,7
Summe Anionen	mmoleq/l	48,6	58,8	53,2	60,2	68,9
lonenbilanz-Fehler	%	0,6	-4,3	-6,0	-9,0	6,7
CSB	mg/l					

LMBV VT3 Seite 20 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61691

Markashaidaraummar		61691	61691	61691	61691	61691	61691	61691
Markscheidernummer Messstellenname		RKB11	RKB11	RKB11	RKB11	RKB11	RKB11	RKB11
			Ki			Ki		
Grundwasserleiterzuordnur	ig I	Ki		Ki	Ki		Ki	Ki
Probenahmedatum		19.07.07	09.01.08	17.04.08	31.07.08	13.11.08	17.02.09	23.04.09
Vor-Ort-Parameter	00	44.7	0.4	0.0	45.0	40.0	0.5	44.0
Grundwassertemperatur	°C	11,7	9,1	9,3	15,2	12,2	6,5	11,6
pH-Wert	-	5,7	4,4	3,8	4,4	5,1	5,5	4,1
elektr. Leitfähigkeit	μS/cm	3220	3040	2580	3120	3340	3300	2660
Sauerstoff	mg/l	1,8	2,7	4,7	3,6	6,0	1,9	1,8
Redoxspannung	mV	350	187	346	5	161	178	327
KB 4,3 (bei pH<4,3)	mmol/l			0,3			-	0,30
KS 4,3 (bei pH>4,3)	mmol/l	1,4	0,3			0,7	0,4	
KB 8,2 (bei pH<8,2)	mmol/l	8,1	5,2	5,5	12,2	9,7	9,1	6,1
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,6	5,1	3,8	3,1	3,3	4,7	3,2
elektr. Leitfähigkeit	μS/cm	3200	2920	2570	3170	3310	3290	2910
Gesamttrockenrückstand	mg/l	3600	4400	3660	3770	5900	4170	3320
Filtrattrockenrückstand	mg/l	3600	3640	2700	3700	4050	3910	2820
Karbonathärte	mgCaO/l		8,4				11,20	
Gesamthärte	mmol/l	17,9	19,8	17,1	17,3	15,9	17,7	16,0
ges. wirksame Acidität	mmol/l	7,14					·	·
TIC	mg/l	37,4	38	38	67	66	67	61
DOC	mg/l	1,5	5,6	7,7	6,1	4,3	3,5	6,1
Ammonium (N)	mg/l	5,48	4,93	0,62	3,9	5,39	6,42	1,18
Nitrat (N)	mg/l	<0,23	0,4	20,2	<0,02	0,70	0,04	0,04
Nitrit (N)	mg/l	<0,015	O , .		0,02	0,. 0	0,0 :	0,0.
Phosphat-ortho (P)	mg/l	<0,002	0,026	<0,007	<0,007	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,04	0,16	0,008	0,690	0,210	0,037
Sulfat	mg/l	2160	2160	1750	2280	2460	2820	1920
Chlorid	mg/l	40,4	20,6	26,5	12,6	13,9	14,8	8,6
Fluorid	mg/l	0,41	20,0	20,0	12,0	10,5	14,0	0,0
Sulfid	mg/l	<0,1	<0,04	<0.04	0,05	0,15	0,16	< 0,04
Calcium (Ca)	mg/l	573	628	563	549	472	544	520
Magnesium (Mg)	mg/l	87	99,5	73,2	88,5	100	101	74,6
Natrium (Na)	mg/l	19,9	22,1	10,3	17,9	18,5	11,2	12,2
Kalium (K)		12,6	16,7	4,3	10,4	18,1	12,0	5,6
Eisen (Fe), gesamt	mg/l	343	10,7	4,3	10,4	10,1	12,0	5,0
	mg/l		198	1 51	260	398	471	40 F
Eisen (Fe) gelöst	mg/l	227 223	161	1,51 1,2	269		406	48,5 44,2
Eisen (2+)	mg/l		101	1,∠	220	356	400	44,2
Mangan (Mn) gesamt	mg/l	35,7	44.7	27.4	40.4	44.0	47.0	20.4
Mangan (Mn) gelöst	mg/l	0.00	41,7	37,4	46,4	44,3	47,3	36,4
Silizium (Si)	mg/l	0,69	25,9	36,5	23,7			27,7
Aluminium (Al)	mg/l	15,4	4,47	21,6	7,68			15,5
Arsen (As)	mg/l		<0,005	<0,005	<0,005			0,017
Blei (Pb)	mg/l		<0,005	<0,005	0,038			0,013
Cadmium (Cd)	mg/l		0,006	0,021	0,011			0,022
Chrom (Cr) ges.	mg/l		<0,01	<0,01	<0,01			0,01
Kupfer (Cu)	mg/l		<0,01	0,01	<0,01			0,01
Nickel (Ni)	mg/l		0,82	1,1	1,07			1,40
Zink (Zn)	mg/l		0,89	0,49	1,05			0,87
IONENBILANZ								
Summe Kationen	mmoleq/l		34,8	26,5	31,7	32,5	34,7	25,0
Summe Anionen	mmoleq/l		30,3	25,2	31,9	35,9	42,2	27,4
Ionenbilanz-Fehler	%	0,1	6,9	2,5	-0,3	-5,0	-9,7	-4,7
CSB	mg/l	42						

LMBV VT3 Seite 21 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61691

	ı	04004	04004	04004	04004	04004
Markscheidernummer		61691	61691	61691	61691	61691
Messstellenname	<u> </u>	RKB11	RKB11	RKB11	RKB11	RKB11
Grundwasserleiterzuordnui	ng I	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		27.07.09	09.11.09	20.05.10	22.02.12	01.09.15
Vor-Ort-Parameter	2.0					
Grundwassertemperatur	°C	18,9	7,9	13,1	Pegel	keine PN
pH-Wert	-	4,8	5,4	3,9	zerstört	Wsp.
elektr. Leitfähigkeit	μS/cm	3120	3400	3230	keine	gering
Sauerstoff	mg/l	2,0	1,4	1,7	PN	
Redoxspannung	mV	278	226	91		
KB 4,3 (bei pH<4,3)	mmol/l	-		0,30		
KS 4,3 (bei pH>4,3)	mmol/l	-	0,5			
KB 8,2 (bei pH<8,2)	mmol/l	15,1	15,9	11,4		
KS 8,2 (bei pH>8,2)	mmol/l	-				
Laboranalytik						
pH-Wert		3,2	3,2	3,3		
elektr. Leitfähigkeit	μS/cm	3320	3420	3420		
Gesamttrockenrückstand	mg/l	3860	4160	4070		
Filtrattrockenrückstand	mg/l	3560	3860	3910		
Karbonathärte	mgCaO/I		14	n.b.		
Gesamthärte	mmol/l	16,7	19,2	16,1		
ges. wirksame Acidität	mmol/l	,	,	,		
TIC	mg/l	67	73	61		
DOC	mg/l	6,2	5	5,7		
Ammonium (N)	mg/l	4,54	5,8	4,9		
Nitrat (N)	mg/l	0,08	0,1	0,12		
Nitrit (N)	mg/l	0,00	0,1	0,12		
Phosphat-ortho (P)	mg/l	0,01	<0,007	0,01		
Phosphor gesamt (P)	mg/l	0,047	0,074	0,030		
Sulfat	mg/l	2310	2490	2350		
Chlorid	mg/l	19,4	13,6	33,1		
Fluorid	mg/l	10,1	10,0	00,1		
Sulfid	mg/l	0,10	0,39	< 0,04		
Calcium (Ca)	mg/l	512	610	490		
Magnesium (Mg)	mg/l	94,8	97	94		
Natrium (Na)	mg/l	13,7	18	22		
Kalium (K)	mg/l	13,7	13,0	12,0		
Eisen (Fe), gesamt	mg/l	10,8	10,0	12,0		
Eisen (Fe), gesamt	mg/l	333	410	322		
Eisen (2+)	mg/l	283	342	319		
Mangan (Mn) gesamt	mg/l	200	J+2	518		
Mangan (Mn) gelöst		43,6	46	41		
	mg/l		40			
Silizium (Si)	mg/l	22,3		25		
Aluminium (AI)	mg/l	14,5		16		
Arsen (As)	mg/l	0,007		0,002		
Blei (Pb)	mg/l	0,027		0,006		
Cadmium (Cd)	mg/l	0,012		0,019		
Chrom (Cr) ges.	mg/l	0,01		0,002		
Kupfer (Cu)	mg/l	< 0,01		0,005		
Nickel (Ni)	mg/l	0,91		0,96		
Zink (Zn)	mg/l	0,83		0,87		
IONENBILANZ		65 -		65		
Summe Kationen	mmoleq/l	32,2	38,0	32,4		
Summe Anionen	mmoleq/l	31,9	35,8	33,4		
Ionenbilanz-Fehler	%	0,3	3,0	-1,5		
CSB	mg/l					

LMBV VT3 Seite 22 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61701

Markscheidernummer		61701	61701	61701	61701	61701	61701	61701
Messstellenname		RKB12						
Grundwasserleiterzuordnur	1	Ki						
Probenahmedatum	ig I	19.07.07	09.01.08		30.07.08	13.11.08	17.02.09	23.04.09
Vor-Ort-Parameter		19.07.07	09.01.00	24.04.00	30.07.00	13.11.00	17.02.09	23.04.03
Grundwassertemperatur	°C	12,2	8,4	9,1	14,1	11,8	7,2	11,0
pH-Wert		4,1	4,3	4,3	4,3	4,2	4,5	4,4
elektr. Leitfähigkeit	μS/cm	3170	3020	2850	2980	2940	2910	2810
Sauerstoff	mg/l	3,0	4,0	2,5	5,8	5,7	1,6	2,0
Redoxspannung	mV	360	209	211	42	173	204	274
KB 4,3 (bei pH<4,3)	mmol/l	300	0	211	72	173	- 204	217
KS 4,3 (bei pH>4,3)	mmol/l	0,6	U				0,2	0,7
KB 8,2 (bei pH<8,2)	mmol/l	16,2	25,4	8,0	17,8	15,4	9,2	10,3
KS 8,2 (bei pH>8,2)	mmol/l	10,2	20,4	0,0	17,0	10,4	5,2	10,5
Laboranalytik	11111101/1							
pH-Wert		4,0	3,8	4,0	3,3	3,9	4,1	3,9
elektr. Leitfähigkeit	μS/cm	3100	2410	2940	3050	3040	2890	2750
Gesamttrockenrückstand	mg/l	3900	3790	3830	3620	3830	3510	3320
Filtrattrockenrückstand	mg/l	3900	3560	3570	3280	3760	3050	3310
Karbonathärte	mgCaO/I	0000	0000	0070	0200	0,00	5,60	19,60
Gesamthärte	mmol/l	15,5	13,1	14,5	15,7	16,1	14,4	14,5
ges. wirksame Acidität	mmol/l	16,9	10,1	14,5	10,7	10, 1	17,7	14,5
TIC	mg/l	70,1	95	72	73	76	89	88
DOC	mg/l	3,5	6,4	4,5	4,7	4,3	4,1	4,3
Ammonium (N)	mg/l	5,58	5,06	5,68	6,07	5,67	5,45	5,26
Nitrat (N)	mg/l	<0,23	5,2	<0,02	<0,02	0,70	0,03	0,10
Nitrit (N)	mg/l	<0,015	0,2	10,02	10,02	0,70	0,00	0,10
Phosphat-ortho (P)	mg/l	0,046	0,068	0,009	0,01	0,032	0,017	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,05	0,15	0,088	0,064	0,130	0,042
Sulfat	mg/l	2220	2160	1960	2190	2280	2230	2230
Chlorid	mg/l	20,1	15,5	14,3	10,3	12,1	11	9,8
Fluorid	mg/l	<0,2	10,0	11,0	10,0	, .		0,0
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	0,06	< 0,04	< 0,04
Calcium (Ca)	mg/l	508	431	478	547	548	481	491
Magnesium (Mg)	mg/l	68,4	57,8	62	50,7	58,3	58,0	55,0
Natrium (Na)	mg/l	13,3	17,7	10,5	10,5	11,9	18,1	28,8
Kalium (K)	mg/l	10,9	20,3	17,8	9,5	19,3	11,1	24,2
Eisen (Fe), gesamt	mg/l	362		,.	-,-	10,0	, .	,
Eisen (Fe) gelöst	mg/l	338	349	307	279	347	367	287
Eisen (2+)	mg/l		244	294	230	307	313	264
Mangan (Mn) gesamt	mg/l	4,74		_				-
Mangan (Mn) gelöst	mg/l	,	2,05	5,76	5,73	6,63	5,61	5,4
Silizium (Si)	mg/l	36,1	33	42,5	44,9	38,7	34,1	45,8
Aluminium (AI)	mg/l	30,5	31,1	18,5	26,6	32,5	32,8	22,6
Arsen (As)	mg/l	,	0,035	0,03	0,019	0,065	0,073	0,045
Blei (Pb)	mg/l		<0,005	0,02	0,024	0,018	0,015	0,017
Cadmium (Cd)	mg/l		0,004	0,001	0,001	<0,001	< 0,001	0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	0,01	0,01	0,01	0,01
Kupfer (Cu)	mg/l		0,15	<0,01	<0,01	<0,01	< 0,01	0,01
Nickel (Ni)	mg/l		0,26	0,24	0,24	0,23	0,22	0,23
Zink (Zn)	mg/l		2,27	1,08	0,91	1,03	1,05	0,97
IONENBILANZ								
Summe Kationen	mmoleq/l		29,5	30,0	29,9	33,2	31,6	29,3
Summe Anionen	mmoleq/l		31,5	27,8	30,4	31,3	31,8	32,0
Ionenbilanz-Fehler	%	1,9	-3,3	3,8	-0,9	2,9	-0,2	-4,4
CSB	mg/l	59,7	·			·	·	
I		•		ā	_			

LMBV VT3 Seite 23 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61701

Markscheidernummer		61701	61701	61701	61701	61701
Messstellenname		RKB12	RKB12	RKB12	RKB12	RKB12
Grundwasserleiterzuordnur	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19 	27.07.09	09.11.09	20.05.10	22.02.12	04.09.15
Vor-Ort-Parameter		21.01.03	03.11.03	20.03.10	22.02.12	04.03.13
Grundwassertemperatur	°C	18,5	9,0	13,4	10,8	14,4
pH-Wert	U	4,8	4,3	4,3	4,6	4,1
elektr. Leitfähigkeit	μS/cm	2870	3030	2760	2620	2920
Sauerstoff	•					
	mg/l mV	1,6 253	1,2	1,7	1,8	4,5
Redoxspannung			102	190	171	434
KB 4,3 (bei pH<4,3)	mmol/l	-			0.4	0,77
KS 4,3 (bei pH>4,3)	mmol/l	0,5	n.b.	0.4	0,1	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	13,1	16,8	8,1	11,4	10,5
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik						
pH-Wert		3,4	4,1	3,2	4,1	3,7
elektr. Leitfähigkeit	μS/cm	2950	2870	2840	2680	3020
Gesamttrockenrückstand	mg/l	3180	3130	3730	3640	
Filtrattrockenrückstand	mg/l	3090	3110	3430	3630	
Karbonathärte	mgCaO/I	14	n.b.	n.b.	2,8	-
Gesamthärte	mmol/l	15,0	16,9	13,4	16,0	15,2
ges. wirksame Acidität	mmol/l					12,3
TIC	mg/l	87	94	67	75	4,2
DOC	mg/l	4,6	4,4	4,8	5,6	6,8
Ammonium (N)	mg/l	5,50	5,45	5,03	4,85	6,80
Nitrat (N)	mg/l	0,10	0,08	0,27	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,06	<0,007	0,02	0,01	0,03
Phosphor gesamt (P)	mg/l	0,098	0,100	0,070	0,250	0,033
Sulfat	mg/l	2050	2190	1650	2070	2240
Chlorid	mg/l	15,8	14,2	24,8	12,7	8,6
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	529	590	460	550	525
Magnesium (Mg)	mg/l	43,5	52	47	56	50,8
Natrium (Na)	mg/l	9,7	11	13	11	11,3
Kalium (K)	mg/l	18,2	13,0	13,0	12,0	13,5
Eisen (Fe), gesamt	mg/l	,	,	,	,	,
Eisen (Fe) gelöst	mg/l	302	300	224	240	270
Eisen (2+)	mg/l	245	241	221	229	260
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	5,63	4,9	4,9	6,2	7,1
Silizium (Si)	mg/l	37,2	41	43	35	35
Aluminium (Al)	mg/l	28,2	25	15	20	16
Arsen (As)	mg/l	0,028	0,043	0,048	0,012	0,094
Blei (Pb)	mg/l	0,023	0,002	0,002	< 0,001	< 0,005
Cadmium (Cd)	mg/l	0,001	0,0006	0,0004	0,0005	< 0,000
Chrom (Cr) ges.	mg/l	0,01	0,005	0,006	0,007	0,009
Kupfer (Cu)	mg/l	< 0,01	< 0,003	0,004	< 0,007	< 0,005
Nickel (Ni)	mg/l	0,19	0,17	0,004	0,16	0,13
Zink (Zn)	mg/l	0,19	0,17	0,14	0,10	1,2
IONENBILANZ	1119/1	0,00	0,02	0,01	0,0	1,4
Summe Kationen	mmoleq/l	29,5	32,8	26,5	29,7	44,2
Summe Anionen	mmoleq/l	28,4	30,6	23,7	29,7	46,9
	mmoleq/i					
lonenbilanz-Fehler		2,0	3,5	5,7	1,0	-2,9
CSB	mg/l					0,96

LMBV VT3 Seite 24 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61711

Markashaidaraummar		61711	61711	61711	61711	61711	61711	61711
Markscheidernummer		RKB13	RKB13	RKB13	RKB13	RKB13	RKB13	RKB13
Messstellenname								
Grundwasserleiterzuordnur	ig I	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		12.07.07	13.12.07	16.04.08	28.07.08	06.11.08	12.02.09	22.04.09
Vor-Ort-Parameter	00	40	40	0.0	40.4	44.0	0.0	44.0
Grundwassertemperatur	°C	13	12	9,6	16,1	11,9	6,3	14,2
pH-Wert	-	5,8	5,9	6,2	5,9	6,1	6,3	6,2
elektr. Leitfähigkeit	μS/cm	2630	2620	2630	2800	2810	2560	2650
Sauerstoff	mg/l	0,0	5,9	2,3	5,9	2,5	2,2	1,4
Redoxspannung	mV	230	18	135	-1	52	163	36
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	1,4	1,1	1,8	1,1	1,2	1,3	1,5
KB 8,2 (bei pH<8,2)	mmol/l	6,6	28,6	3,9	7,7	7,1	3,5	6,3
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,8	5,6	6,0	5,7	5,6	6,0	6,0
elektr. Leitfähigkeit	μS/cm	2660	2520	2770	2790	2680	2500	2560
Gesamttrockenrückstand	mg/l	2900	3160	3050	3260	3210	2980	3000
Filtrattrockenrückstand	mg/l	2900	3000	3030	3090	3020	2840	2860
Karbonathärte	mgCaO/l		44,8	39,3	30,8	33,6	36,5	42,1
Gesamthärte	mmol/l	15,4	16	15,7	16,6	17,0	15,1	14,6
ges. wirksame Acidität	mmol/l	5,26						
TIC	mg/l	18,9	56	46	49	51	47	49
DOC	mg/l	1,5	5,8	3,3	3,4	2,4	2,7	3,1
Ammonium (N)	mg/l	3,03	3,85	3,81	3,9	3,73	2,67	3,05
Nitrat (N)	mg/l	<0,23	0,4	1	<0,02	1,0	0,1	0,1
Nitrit (N)	mg/l	<0,015	O , .	•	0,02	.,0	•, .	•, .
Phosphat-ortho (P)	mg/l	0,003	0,108	<0,007	0,026	<0,007	0,012	0,011
Phosphor gesamt (P)	mg/l	0,003	0,4	0,51	0,14	0,250	0,081	0,066
Sulfat	mg/l	1780	1630	1990	2100	1850	1840	1830
Chlorid	mg/l	13,4	15,7	42	14,6	135	15	13
Fluorid	mg/l	0,36	10,7	72	14,0	100	10	10
Sulfid	mg/l	<0,1	0,08	0,21	0,15	0,07	< 0.04	< 0,04
Calcium (Ca)	mg/l	560	568	559	592	618	551	522
Magnesium (Mg)	mg/l	35,9	45,3	42,5	45	38,1	32,3	38,9
Natrium (Na)	mg/l	7,81	10,7	9,9	9,8	7,5	8,1	8,3
				·				
Kalium (K)	mg/l	14,2 181	21,7	18,3	20,4	18,2	15,3	15,2
Eisen (Fe), gesamt	mg/l		106	246	202	267	100	245
Eisen (Fe) gelöst	mg/l	169	186	246	282	267	182	215
Eisen (2+)	mg/l	101	182	215	248	260	171	184
Mangan (Mn) gesamt	mg/l	13,1	111	40.0	10.0	10.0	40	17.0
Mangan (Mn) gelöst	mg/l	0.40	14,1	16,9	16,2	13,2	13	17,2
Silizium (Si)	mg/l	0,13						
Aluminium (Al)	mg/l	23,1						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		28,9	28,4	29,8	31,1	26,3	25,8
Summe Anionen	mmoleq/l		24,3	31,4	30,8	29,8	28,9	28,3
Ionenbilanz-Fehler	%	0,7	8,6	-4,0	-1,6	2,1	-4,8	-4,6
CSB	mg/l	21,5						
							_	

LMBV VT3 Seite 25 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61711

Markscheidernummer		61711	61711	61711	61711	61711
Messstellenname		RKB13	RKB13	RKB13	RKB13	RKB13
Grundwasserleiterzuordnur	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ly I	23.07.09	05.11.09	19.05.10	23.02.12	04.09.15
Vor-Ort-Parameter		25.07.05	03.11.03	19.00.10	25.02.12	04.03.13
Grundwassertemperatur	°C	18,7	11,2	11,4	7,4	13,9
pH-Wert	U	6,0	6,8	6,0	6,1	5,8
elektr. Leitfähigkeit	μS/cm	2710	2770	2680	2370	2155
Sauerstoff	•					
Redoxspannung	mg/l mV	2,5 87	1,5 22	1,9 127	2,0 132	3,5 237
KB 4,3 (bei pH<4,3)	mmol/l		22	121	132	
· · · · · · · · · · · · · · · · · · ·		-	4.0	4.0	4.4	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	1,0	1,6	1,3	1,1	0,7
KB 8,2 (bei pH<8,2)	mmol/l	8,3	8,9	4,2	7,6	3,7
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik			5 0		5 0	5 0
pH-Wert	0/	5,5	5,6	5,5	5,8	5,0
elektr. Leitfähigkeit	μS/cm	2640	2710	2600	2470	2140
Gesamttrockenrückstand	mg/l	3020	3370	3090	2970	
Filtrattrockenrückstand	mg/l	2900	2960	3020	2650	00 -
Karbonathärte	mgCaO/I	28,0	44,9	36,5	30,8	20,5
Gesamthärte	mmol/l	15,4	14,7	14,1	15,7	12,0
ges. wirksame Acidität	mmol/l					6,0
TIC	mg/l	53	55	62	43	21
DOC	mg/l	2,7	2,4	2,5	2,4	3
Ammonium (N)	mg/l	3,13	3,19	3,01	2,65	2,30
Nitrat (N)	mg/l	0,1	0,09	< 0,02	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,01	0,01	0,02	0,01	0,06
Phosphor gesamt (P)	mg/l	0,077	0,069	0,120	0,110	0,062
Sulfat	mg/l	1890	1930	1640	1740	1360
Chlorid	mg/l	20,4	13,6	17,5	12,7	19,6
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	558	530	500	570	436
Magnesium (Mg)	mg/l	35,1	36	40	36	26,4
Natrium (Na)	mg/l	6,6	6,5	8	11	7,3
Kalium (K)	mg/l	12,2	13,0	13,0	11,0	10,7
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	249	210	197	190	110
Eisen (2+)	mg/l	212	177	196	184	110
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	17,4	13,0	13,0	16,0	9,5
Silizium (Si)	mg/l					
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	J					
Summe Kationen	mmoleq/l	27,2	25,3	25,8	28,1	29,3
Summe Anionen	mmoleq/l	28,4	31,8	25,3	26,3	28,9
Ionenbilanz-Fehler	%	-2,1	-7,3	0,8	3,2	0,7
CSB	mg/l	, ,	,-	-,-	-,-	-,
<u> </u>						

LMBV VT3 Seite 26 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61721

Markscheidernummer		61721	61721	61721	61721	61721	61721	61721
Messstellenname		RKB14						
Grundwasserleiterzuordnu	ng	Ki						
Probenahmedatum		26.07.07	20.01.08	16.04.08	23.07.08	06.11.08	12.02.09	22.04.09
Vor-Ort-Parameter								
Grundwassertemperatur	°C	13,5	9,2	9	14,6	12,4	7,0	15,3
pH-Wert	-	5,8	5,4	6,1	5,9	5,5	6,1	6,1
elektr. Leitfähigkeit	μS/cm	2890	1855	1060	2810	2030	1800	1975
Sauerstoff	mg/l	2,5	2,1	3,1	2,6	6,1	3,7	2,6
Redoxspannung	mV	325	193	216	-4	170	220	115
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	5,3	0,7	1,6	1,8	0,5	1,9	1,4
KB 8,2 (bei pH<8,2)	mmol/l	9,3	6,1	3,7	2,8	3,4	6,1	4,3
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		5,95*	5,7	5,8	5,4	3,9	5,9	5,3
elektr. Leitfähigkeit	μS/cm	2970	1720	1080	2710	2110	1800	1880
Gesamttrockenrückstand	mg/l	3200	2650	880	2930	2210	1930	2050
Filtrattrockenrückstand	mg/l	3200	1920	830	2790	2100	1810	1940
Karbonathärte	mgCaO/l		19,6	65,9	50,5	14,0	53,3	39,3
Gesamthärte	mmol/l	19,3	10,1	5,85	20	11,0	9,8	10,7
ges. wirksame Acidität	mmol/l	<1						
TIC	mg/l	187	71	58	83	43	70	53
DOC	mg/l	6,1	9,1	4,2	4,1	5,0	5,4	5,6
Ammonium (N)	mg/l	1,55	1,99	1,02	1,37	1,65	1,61	1,81
Nitrat (N)	mg/l	29,6	0,5	0,9	0,8	0,70	0,03	0,04
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,004	<0,007	<0,007	<0,007	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,03	0,28	0,111	0,110	0,030	0,031
Sulfat	mg/l	1850	1170	540	1900	1250	1130	1220
Chlorid	mg/l	30	14,2	10,3	29,8	15,9	14,4	15,6
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	623	351	205	667	378	336	364
Magnesium (Mg)	mg/l	92	32,6	17,8	81,4	42,1	34,4	39,7
Natrium (Na)	mg/l	20,9	8,8	5,3	20,7	9,3	7,7	9,8
Kalium (K)	mg/l	7,2	4,7	3,1	10	4,6	3,5	5,2
Eisen (Fe), gesamt	mg/l	160						
Eisen (Fe) gelöst	mg/l	156	144	36,3	34,8	95,6	106	95,1
Eisen (2+)	mg/l	123	101	33,1	34,6	95,0	97,0	85,2
Mangan (Mn) gesamt	mg/l	20,7						
Mangan (Mn) gelöst	mg/l		31,4	11,8	29,5	28,9	28,5	30,4
Silizium (Si)	mg/l	<0,1						
Aluminium (Al)	mg/l	7,44						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ			46.5	44.	00 -	46.5	46 :	40.5
Summe Kationen	mmoleq/l		19,6	11,1	29,7	19,8	18,1	18,9
Summe Anionen	mmoleq/l		18,6	10,5	28,7	19,3	19,6	20,2
Ionenbilanz-Fehler	%	-2,6	2,6	2,7	1,8	1,3	-3,5	-3,2
CSB	mg/l	22,2						

LMBV VT3 Seite 27 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61721

Markscheidernummer		61721	61721	61721	61721	61721
Messstellenname		RKB14	RKB14	RKB14	RKB14	RKB14
Grundwasserleiterzuordnui	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ly I	28.07.09	05.11.09	25.05.10	23.02.12	04.09.15
Vor-Ort-Parameter		20.07.03	03.11.03	23.03.10	25.02.12	04.03.13
Grundwassertemperatur	°C	18,3	11,5	14,7	8,3	14,0
pH-Wert		5,9	6,3	6,2	6,5	6,2
elektr. Leitfähigkeit	μS/cm	2770	2570	2460	880	2700
Sauerstoff	•		1,7			
Redoxspannung	mg/l mV	2,0 181	51	2,1 88	1,9 95	6,6 229
KB 4,3 (bei pH<4,3)	mmol/l		31	00	90	< 0,05
		-	2.6	2.2	2.5	
KS 4,3 (bei pH>4,3)	mmol/l	2,2	2,6	3,3	3,5	2,1 1,5
KB 8,2 (bei pH<8,2)	mmol/l	8,4	6,6	3,0	3,3	
KS 8,2 (bei pH>8,2)	mmol/l	-				< 0,05
Laboranalytik		<i>E</i> 7	6.0	C F	C F	6.0
pH-Wert	uC/am	5,7	6,2	6,5	6,5	6,0
elektr. Leitfähigkeit	μS/cm	2650	2340	1570	827	2610
Gesamttrockenrückstand	mg/l	2940	2660	1370	900	
Filtrattrockenrückstand	mg/l	2740	2470	1340	672	E7.40
Karbonathärte	mgCaO/I	61,7	72,9	92,5	98,1	57,48
Gesamthärte	mmol/l	18,0	15,9	9,0	4,6	17,6
ges. wirksame Acidität	mmol/l	440	00	400	0.4	-1,5
TIC	mg/l	110	99	100	64	31
DOC	mg/l	5,5	3,5	4,1	6,5	11
Ammonium (N)	mg/l	1,44	0,99	0,6	0,29	1,8
Nitrat (N)	mg/l	0,09	0,2	0,43	< 0,05	0,6
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,01	<0,007	<0,007	0,01	0,01
Phosphor gesamt (P)	mg/l	0,014	0,120	0,120	0,060	0,015
Sulfat	mg/l	1820	1580	777	287	1720
Chlorid	mg/l	27,1	24,5	14,8	6,7	38,5
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	584	520	300	160	593
Magnesium (Mg)	mg/l	82,6	71,0	38,0	15,0	68,4
Natrium (Na)	mg/l	16,0	16,0	8,1	3,9	16,3
Kalium (K)	mg/l	7,8	7,0	3,7	2,6	9,8
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	21,1	11	11,4	23	48
Eisen (2+)	mg/l	17,8	10,9	9,5	19,2	40
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	32,6	14	20	6,8	22
Silizium (Si)	mg/l					
Aluminium (Al)	mg/l					
Arsen (As)	mg/l					
Blei (Pb)	mg/l					
Cadmium (Cd)	mg/l					
Chrom (Cr) ges.	mg/l					
Kupfer (Cu)	mg/l					
Nickel (Ni)	mg/l					
Zink (Zn)	mg/l					
IONENBILANZ	, ,	00.0	00.4	45.0	0.0	00.0
Summe Kationen	mmoleq/l	26,0	23,4	15,0	9,2	39,0
Summe Anionen	mmoleq/l	28,7	27,3	15,3	7,7	39,0
Ionenbilanz-Fehler	%	-5,0	-7,7	-0,9	8,9	0,0
CSB	mg/l					

LMBV VT3 Seite 28 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61731

Markscheidernummer		61731	61731	61731	61731	61731	61731	61731
Messstellenname		RKB15	RKB15	RKB15	RKB15	RKB15	RKB15	RKB15
Grundwasserleiterzuordnur	l	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	iy I	12.07.07	20.12.07		21.07.08	06.11.08		22.04.09
Vor-Ort-Parameter		12.07.07	20.12.07	10.04.00	21.07.00	00.11.00	12.02.09	22.04.09
Grundwassertemperatur	°C	12,4	8,3	9,3	14,5	12,9	8,2	15,5
pH-Wert	C	3,9		4,2	4,1	4,2	4,4	4,3
•	μS/cm	4300	4,0 4150	3780	4060	4120	3700	3840
elektr. Leitfähigkeit Sauerstoff								
	mg/l mV	2,2 390	2,6 64	0,0 220	2,7 60	3,6 198	2,0 283	1,6
Redoxspannung		0,79						232
KB 4,3 (bei pH<4,3)	mmol/l	0,79	0,30	0,00	0,40	0,3	-	
KS 4,3 (bei pH>4,3)	mmol/l	20.4	25.7	40.0	24.0	25.4	- 20.7	20.0
KB 8,2 (bei pH<8,2)	mmol/l	32,4	25,7	18,6	31,9	25,1	20,7	28,2
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik		4.0	4.4	0.0	0.0	0.7	4.0	0.0
pH-Wert	0.1	4,0	4,1	3,9	3,6	3,7	4,0	3,9
elektr. Leitfähigkeit	μS/cm	4300	4040	4010	4150	4050	3890	3710
Gesamttrockenrückstand	mg/l	6300	13100	5300	5760	5740	5640	5340
Filtrattrockenrückstand	mg/l	6300	6010	5190	5740	5600	5380	5230
Karbonathärte	mgCaO/I	44.5	40.0	40.0	40 -	44.5	40.5	44.5
Gesamthärte	mmol/l	11,3	13,9	13,8	12,5	14,0	12,3	11,7
ges. wirksame Acidität	mmol/l	17,8						
TIC	mg/l	57,7	72	58	5,4	63	67	65
DOC	mg/l	3,1	8	4	63	5,0	5,7	5,9
Ammonium (N)	mg/l	5,74	6,32	6,32	5,18	6,48	5,59	5,98
Nitrat (N)	mg/l	<0,23	0,8	6	5,8	0,70	0,07	0,20
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,007	<0,007	0,029	0,082	<0,007	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,02	0,24	0,17	0,180	0,067	0,052
Sulfat	mg/l	3790	3450	3590	3690	3310	3450	3270
Chlorid	mg/l	24,9	15,2	36,7	21,6	14,5	13,4	12,8
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	389	501	506	447	508	450	427
Magnesium (Mg)	mg/l	39,4	34,3	27,8	32,2	32,6	27,1	24,3
Natrium (Na)	mg/l	6,35	11,6	3,9	3,6	3,9	4,3	4,5
Kalium (K)	mg/l	28,9	39,6	34,8	25,5	36,4	36,6	35,9
Eisen (Fe), gesamt	mg/l	1110						
Eisen (Fe) gelöst	mg/l	920	1230	1060	1150	1080	1070	938
Eisen (2+)	mg/l	933	943	970	1080	1050	851	846
Mangan (Mn) gesamt	mg/l	8,86						
Mangan (Mn) gelöst	mg/l		10,6	9,19	7,88	9,52	7,47	7,5
Silizium (Si)	mg/l	67,8	16,2	16,3	14,9	10,2	16,1	16,7
Aluminium (AI)	mg/l	15,4	59,1	67,1	67,2	54,8	62,4	78,3
Arsen (As)	mg/l		0,022	0,008	0,017	0,025	0,018	0,015
Blei (Pb)	mg/l		<0,005	0,079	0,078	0,044	0,04	0,036
Cadmium (Cd)	mg/l		0,005	0,001	<0,001	0,002	< 0,001	< 0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	<0,01	0,02	0,02	0,02
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,01	<0,01	< 0,01	< 0,01
Nickel (Ni)	mg/l		0,44	0,43	0,44	0,55	0,5	0,45
Zink (Zn)	mg/l		2,57	2,35	2,43	2,08	2,08	1,81
IONENBILANZ	Ĭ							
Summe Kationen	mmoleq/l		54,0	47,9	46,7	48,7	46,9	41,9
Summe Anionen	mmoleq/l		45,3	49,1	49,1	43,3	48,6	43,5
Ionenbilanz-Fehler	%	-10,0	8,7	-1,1	-2,4	5,8	-1,7	-1,9
CSB	mg/l	166	,	,	,	,	,	, -
L	J							

LMBV VT3 Seite 29 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61731

Markscheidernummer		61731	61731	61731	61731
Messstellenname		RKB15	RKB15	RKB15	RKB15
Grundwasserleiterzuordnur	na I	Ki	Ki	Ki	Ki
Probenahmedatum	19	23.07.09	05.11.09	19.05.10	23.02.12
Vor-Ort-Parameter		20.07.00	00.11.00	10.00.10	20.02.12
Grundwassertemperatur	°C	18,8	12,2	11,1	
pH-Wert	_	4,3	4,3	4,1	
elektr. Leitfähigkeit	μS/cm	3950	4090	3950	
Sauerstoff	mg/l	2,7	2,2	2,2	
Redoxspannung	mV	162	215	196	
KB 4,3 (bei pH<4,3)	mmol/l	-	213	3,30	
KS 4,3 (bei pH>4,3)	mmol/l	-		3,30	
	mmol/l	26,2	41,5	22.7	
KB 8,2 (bei pH<8,2)		20,2	41,5	23,7	
KS 8,2 (bei pH>8,2)	mmol/l	-			
Laboranalytik		2.0	2.0	2.0	
pH-Wert		3,6	3,6	3,2	
elektr. Leitfähigkeit	μS/cm	3970	4050	4000	
Gesamttrockenrückstand	mg/l	5170	6050	5540	
Filtrattrockenrückstand	mg/l	5120	5350	5380	
Karbonathärte	mgCaO/I	40 =	40.0	44.0	
Gesamthärte	mmol/l	12,7	12,6	11,8	
ges. wirksame Acidität	mmol/l				
TIC	mg/l	72	74	78	
DOC	mg/l	5,1	5,4	6,1	
Ammonium (N)	mg/l	6,27	5,51	5,21	
Nitrat (N)	mg/l	0,1	0,2	0,1	
Nitrit (N)	mg/l				
Phosphat-ortho (P)	mg/l	0,02	<0,007	0,02	
Phosphor gesamt (P)	mg/l	0,040	0,058	0,130	
Sulfat	mg/l	3400	3450	3240	
Chlorid	mg/l	17,6	15,2	35,4	
Fluorid	mg/l				
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	469	460	430	
Magnesium (Mg)	mg/l	24,6	28	27	
Natrium (Na)	mg/l	3,8	5,6	12	
Kalium (K)	mg/l	24,1	27,0	27,0	
Eisen (Fe), gesamt	mg/l				
Eisen (Fe) gelöst	mg/l	1010	870	789	
Eisen (2+)	mg/l	823	712	781	
Mangan (Mn) gesamt	mg/l				
Mangan (Mn) gelöst	mg/l	6,96	5,6	5,1	
Silizium (Si)	mg/l	12,6	13	23	
Aluminium (AI)	mg/l	70,2	56	76	
Arsen (As)	mg/l	0,015	0,015	0,015	
Blei (Pb)	mg/l	0,064	0,003	0,003	
Cadmium (Cd)	mg/l	0,001	0,0007	0,001	
Chrom (Cr) ges.	mg/l	0,02	0,011	0,013	
Kupfer (Cu)	mg/l	0,01	0,003	0,001	
Nickel (Ni)	mg/l	0,46	0,5	0,5	
Zink (Zn)	mg/l	1,76	1,9	1,7	
IONENBILANZ	Ĭ				
Summe Kationen	mmoleq/l	43,9	40,1	38,8	
Summe Anionen	mmoleq/l	45,5	48,9	45,0	
Ionenbilanz-Fehler	%	-1,9	-9,9	-7,4	
CSB	mg/l	,			
t					

LMBV VT3 Seite 30 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61741

Markscheidernummer		61741	61741	61741	61741	61741	61741	61741
Messstellenname		RKB16						
Grundwasserleiterzuordnur	ng	Ki						
Probenahmedatum		12.07.07	21.01.08	16.04.08	28.07.08	06.11.08	12.02.09	22.04.09
Vor-Ort-Parameter								
Grundwassertemperatur	°C	12	10,3	9,1	15,1	12,6	9,1	15,4
pH-Wert	-	5,9	6,0	6,1	5,9	5,9	6,2	6,6
elektr. Leitfähigkeit	μS/cm	5000	4500	4340	4600	4770	4600	4370
Sauerstoff	mg/l	0,8	3,2	2,1	5,6	1,9	1,4	1,2
Redoxspannung	mV	200	178	29	-2	29	238	-24
KB 4,3 (bei pH<4,3)	mmol/l						-	
KS 4,3 (bei pH>4,3)	mmol/l	4,9	2,4	4,7	3,9	4,8	4,2	4,1
KB 8,2 (bei pH<8,2)	mmol/l	35,2	15,7	16,6	29,6	23,8	15,4	24,4
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		6,0	5,6	5,7	3,3	5,6	5,9	5,7
elektr. Leitfähigkeit	μS/cm	4900	4160	4470	4760	4550	4440	4200
Gesamttrockenrückstand	mg/l	6700	6300	6040	6280	6450	6360	5600
Filtrattrockenrückstand	mg/l	6700	6100	5980	6110	6290	6060	5580
Karbonathärte	mgCaO/l		89,6	89,7	109,4		117,80	115,00
Gesamthärte	mmol/l	17	16,5	16,7	16,8	14,9	15,9	14,8
ges. wirksame Acidität	mmol/l	47,5	·		-			
TIC	mg/l	37	73	80	137	155	155	150
DOC	mg/l	5,8	8,6	6	7,2	8,7	8,7	8,3
Ammonium (N)	mg/l	7,96	9,29	9,07	8,9	11,9	9,57	9,46
Nitrat (N)	mg/l	<0,23	0,6	1,1	<0,02	0,70	0,05	0,10
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,009	0,029	0,029	0,042	<0,007	0,01	0,008
Phosphor gesamt (P)	mg/l	<0,2	0,09	0,11	0,2	0,410	0,140	0,097
Sulfat	mg/l	4290	3660	3620	3700	3410	3640	3420
Chlorid	mg/l	75,7	77,6	16,1	71,7	36,6	66,9	73
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	496	478	504	515	456	482	450
Magnesium (Mg)	mg/l	112	110	101	95,9	86,7	93,1	88
Natrium (Na)	mg/l	27,2	29,1	25	23,3	21,7	21,5	22,3
Kalium (K)	mg/l	10,3	11,5	16,7	9,6	9,7	18,6	21,8
Eisen (Fe), gesamt	mg/l	1420						
Eisen (Fe) gelöst	mg/l	1400	1160	1280	1310	1310	1180	1100
Eisen (2+)	mg/l	1160	1150	1160	1170	1310	1180	1060
Mangan (Mn) gesamt	mg/l	61,6						
Mangan (Mn) gelöst	mg/l		59	61,6	52,7	32,9	34,8	36,8
Silizium (Si)	mg/l	0,2						
Aluminium (AI)	mg/l	14,8						
Arsen (As)	mg/l							
Blei (Pb)	mg/l							
Cadmium (Cd)	mg/l							
Chrom (Cr) ges.	mg/l							
Kupfer (Cu)	mg/l							
Nickel (Ni)	mg/l							
Zink (Zn)	mg/l							
IONENBILANZ								
Summe Kationen	mmoleq/l		51,6	54,5	53,0	53,0	50,4	45,2
Summe Anionen	mmoleq/l		53,9	52,2	54,6	50,2	57,2	56,3
Ionenbilanz-Fehler	%	-2,2	-2,2	2,1	-1,5	2,7	-6,3	-10,7
CSB	mg/l	189						

LMBV VT3 Seite 31 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61741

Markscheidernummer	1	61741	61741	61741	61741
Messstellenname		RKB16	RKB16	RKB16	RKB16
		Ki	Ki	Ki	Ki
Grundwasserleiterzuordnur	ig I				
Probenahmedatum		23.07.09	05.11.09	19.05.10	23.02.12
Vor-Ort-Parameter	°C	40.0	40.5	40.0	Danal
Grundwassertemperatur	10	18,9	12,5	10,3	Pegel
pH-Wert	- 0/	5,8	5,8	5,9	zerstört
elektr. Leitfähigkeit	μS/cm	4650	4970	4540	keine
Sauerstoff	mg/l	1,3	1,7	5,9	PN
Redoxspannung	mV	-21	-19	13	
KB 4,3 (bei pH<4,3)	mmol/l	-			
KS 4,3 (bei pH>4,3)	mmol/l	4,1	4,7	4,8	
KB 8,2 (bei pH<8,2)	mmol/l	31,2	37,8	27,1	
KS 8,2 (bei pH>8,2)	mmol/l	-			
Laboranalytik					
pH-Wert		5,8	5,8	5,2	
elektr. Leitfähigkeit	μS/cm	4440	4510	4340	
Gesamttrockenrückstand	mg/l	5790	6360	6670	
Filtrattrockenrückstand	mg/l	5760	5960	6330	
Karbonathärte	mgCaO/I	115	131,8	134,6	
Gesamthärte	mmol/l	16,0	14,6	15,5	
ges. wirksame Acidität	mmol/l				
TIC	mg/l	160	160	150	
DOC	mg/l	8,1	9,5	8,6	
Ammonium (N)	mg/l	10,5	9,57	9,55	
Nitrat (N)	mg/l	0,05	0,1	0,05	
Nitrit (N)	mg/l				
Phosphat-ortho (P)	mg/l	<0,007	0,01	0,01	
Phosphor gesamt (P)	mg/l	0,14	0,21	0,08	
Sulfat	mg/l	3530	3620	3230	
Chlorid	mg/l	63,2	43,6	68,1	
Fluorid	mg/l				
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	
Calcium (Ca)	mg/l	500	450	470	
Magnesium (Mg)	mg/l	85,5	81	92	
Natrium (Na)	mg/l	20,3	23	29	
Kalium (K)	mg/l	18,6	11,0	11,0	
Eisen (Fe), gesamt	mg/l	,	,	,	
Eisen (Fe) gelöst	mg/l	1110	1100	1130	
Eisen (2+)	mg/l	1060	954	1114	
Mangan (Mn) gesamt	mg/l				
Mangan (Mn) gelöst	mg/l	33,6	22	26	
Silizium (Si)	mg/l	- , -		-	
Aluminium (AI)	mg/l				
Arsen (As)	mg/l				
Blei (Pb)	mg/l				
Cadmium (Cd)	mg/l				
Chrom (Cr) ges.	mg/l				
Kupfer (Cu)	mg/l				
Nickel (Ni)	mg/l				
Zink (Zn)	mg/l				
IONENBILANZ					
Summe Kationen	mmoleq/l	46,8	44,1	49,9	
Summe Anionen	mmoleq/l	52,6	56,1	49,0	
Ionenbilanz-Fehler	%	-5,8	-12,0	0,9	
CSB	mg/l	5,0	12,0	0,0	
000	1119/1				

LMBV VT3 Seite 32 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61751

Markscheidernummer		61751	61751	61751	61751	61751	61751	61751
Messstellenname		RKB17	RKB17	RKB17	RKB17	RKB17	RKB17	RKB17
Grundwasserleiterzuordnu	na	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum		12.07.07	20.12.07		30.07.08		12.02.09	
Vor-Ort-Parameter								
Grundwassertemperatur	°C	12	7	9,1	15,2	12,2	6,0	15,4
pH-Wert	-	3,7	3,7	3,9	3,8	3,9	4,3	4,3
elektr. Leitfähigkeit	μS/cm	4500	4210	3800	3620	3610	3480	3450
Sauerstoff	mg/l	3,8	4,4	3,2	4,0	3,4	2,4	2,0
Redoxspannung	mV	420	257	265	21	232	59	269
KB 4,3 (bei pH<4,3)	mmol/l	2,69	0,80	0,45	0,90	0,4		
KS 4,3 (bei pH>4,3)	mmol/l		·	·	·	·		
KB 8,2 (bei pH<8,2)	mmol/l	54,3	31,0	19,8	23,8	16,5	11,0	20,3
KS 8,2 (bei pH>8,2)	mmol/l		·	·	·	·	·	·
Laboranalytik								
pH-Wert		3,8	3,8	3,9	3,1	3,8	3,9	4,1
elektr. Leitfähigkeit	μS/cm	4880	4100	3920	3590	3640	3520	3400
Gesamttrockenrückstand	mg/l	7500	6930	5420	4310	4690	4500	4430
Filtrattrockenrückstand	mg/l	7500	5840	4410	4300	4440	4350	4210
Karbonathärte	mgCaO/l							
Gesamthärte	mmol/l	17,4	16,6	16,6	17	17,0	16,9	14,8
ges. wirksame Acidität	mmol/l	69						
TIC	mg/l	122	82	117	116	123	136	140
DOC	mg/l	14,5	20	12	13	13	15	12
Ammonium (N)	mg/l	10,7	9,95	10,5	7,04	7,29	6,72	6,98
Nitrat (N)	mg/l	<0,23	0,6	4,3	<0,02	0,70	0,05	< 0,02
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,083	0,049	0,01	0,033	0,499	0,261	0,068
Phosphor gesamt (P)	mg/l	<0,2	0,32	0,23	0,072	0,870	0,530	0,460
Sulfat	mg/l	4840	3400	3050	2750	2560	2930	2630
Chlorid	mg/l	45,2	39	47,2	25,7	34,8	36,1	33,2
Fluorid	mg/l	<0,2						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	498	481	498	514	514	524	466
Magnesium (Mg)	mg/l	122	111	101	102	101	93,7	91,1
Natrium (Na)	mg/l	27	21,7	18,8	19	15,8	17,2	18,5
Kalium (K)	mg/l	59,7	54,1	55,3	45,5	46,9	39,6	52,6
Eisen (Fe), gesamt	mg/l	1420						
Eisen (Fe) gelöst	mg/l	1360	1030	587	542	501	525	540
Eisen (2+)	mg/l	1100	892	440	450	500	474	471
Mangan (Mn) gesamt	mg/l	33						
Mangan (Mn) gelöst	mg/l		11,1	7,62	7,1	7,19	8,84	7,38
Silizium (Si)	mg/l	82,4	53	55,7	63,2	61,9	58,8	59,4
Aluminium (AI)	mg/l	43,7	54,5	37,6	37,2	33,7	26,8	32,9
Arsen (As)	mg/l		0,077	0,231	0,242	0,493	0,412	0,328
Blei (Pb)	mg/l		<0,005	0,037	0,028	0,023	0,024	0,022
Cadmium (Cd)	mg/l		0,01	0,008	0,004	0,005	0,004	0,003
Chrom (Cr) ges.	mg/l		<0,01	0,02	0,05	0,07	0,06	0,05
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,01	<0,01	< 0,01	< 0,01
Nickel (Ni)	mg/l		0,72	0,5	0,52	0,48	0,48	0,42
Zink (Zn)	mg/l		2,13	1,51	1,12	0,85	1,1	0,98
IONENBILANZ								
Summe Kationen	mmoleq/l		53,8	40,5	39,3	37,1	38,4	37,1
Summe Anionen	mmoleq/l		44,8	43,2	36,0	36,6	42,4	36,6
Ionenbilanz-Fehler	%	-2,3	9,2	-3,2	4,4	0,7	-4,9	0,7
CSB	mg/l	229						

LMBV VT3 Seite 33 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61751

Markscheidernummer		61751	61751	61751	61751	61751
Messstellenname		RKB17	RKB17	RKB17	RKB17	RKB17
Grundwasserleiterzuordnur	<u> </u>	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	23.07.09	05.11.09	19.05.10	22.02.12	04.09.15
Vor-Ort-Parameter		23.07.03	03.11.03	19.00.10	22.02.12	04.03.13
Grundwassertemperatur	°C	18,2	11,3	11,3	9,4	14,2
pH-Wert		4,0	4,2	3,9	4,3	3,7
elektr. Leitfähigkeit	μS/cm	3570	3820	3530	3570	3730
Sauerstoff	•					
	mg/l mV	2,4 240	1,9 256	2,0	1,9 176	4,2 446
Redoxspannung			250	194	170	
KB 4,3 (bei pH<4,3)	mmol/l	0,50	0.5	1,80		2,66
KS 4,3 (bei pH>4,3)	mmol/l	47.0	0,5	40.0	00.5	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	17,6	24,3	16,9	29,5	21,8
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik		0.0	0.0	0.0	4.4	0.0
pH-Wert	0.1	3,9	3,6	3,8	4,1	3,2
elektr. Leitfähigkeit	μS/cm	3630	3830	3600	3730	3680
Gesamttrockenrückstand	mg/l	4430	4890	4660	5570	
Filtrattrockenrückstand	mg/l	4390	4620	4470	5240	
Karbonathärte	mgCaO/l		14			
Gesamthärte	mmol/l	15,8	15,4	15,1	16,9	16,5
ges. wirksame Acidität	mmol/l					21,3
TIC	mg/l	130	150	150	150	34
DOC	mg/l	12	12	13	14	13
Ammonium (N)	mg/l	6,94	6,64	6,71	6,55	7,5
Nitrat (N)	mg/l	0,1	0,06	0,06	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,12	0,03	0,12	0,04	0,09
Phosphor gesamt (P)	mg/l	0,40	0,13	0,13	0,50	0,09
Sulfat	mg/l	2810	2990	2580	3150	2840
Chlorid	mg/l	41,0	40,5	38,2	50,4	41,6
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	474	450	450	520	525
Magnesium (Mg)	mg/l	96,4	100	93	96	83,7
Natrium (Na)	mg/l	15,4	22	22	22	18,3
Kalium (K)	mg/l	39,9	50,0	43,0	44,0	43,1
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	543	570	456	720	580
Eisen (2+)	mg/l	471	454	456	608	550
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	7,89	7,3	8	9,7	6,4
Silizium (Si)	mg/l	51,3	51	68	52	49
Aluminium (Al)	mg/l	33,9	26	27	31	28
Arsen (As)	mg/l	0,384	0,25	0,36	0,19	0,21
Blei (Pb)	mg/l	0,037	0,002	0,005	< 0,001	< 0,005
Cadmium (Cd)	mg/l	0,003	0,021	0,0021	0,0022	< 0,001
Chrom (Cr) ges.	mg/l	0,06	0,044	0,052	0,052	0,043
Kupfer (Cu)	mg/l	0,01	0,002	< 0,001	0,002	< 0,005
Nickel (Ni)	mg/l	0,47	0,56	0,48	0,62	0,31
Zink (Zn)	mg/l	1,03	1,2	1,1	1,8	1,4
IONENBILANZ						
Summe Kationen	mmoleq/l	36,5	37,2	34,7	43,2	60,8
Summe Anionen	mmoleq/l	38,7	41,8	37,0	45,5	60,3
Ionenbilanz-Fehler	%	-3,0	-5,9	-3,2	-2,6	0,4
CSB	mg/l			•		
					•	

LMBV VT3 Seite 34 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61761

Markscheidernummer		61761	61761	61761	61761	61761	61761	61761
Messstellenname		RKB18	RKB18	RKB18	RKB18	RKB18	RKB18	RKB18
		Ki	Ki	Ki			Ki	
Grundwasserleiterzuordnur Probenahmedatum	ıg				Ki 24.04.08	Ki 31.07.08		Ki 19.02.09
Vor-Ort-Parameter		26.07.07	21.01.08	18.02.08 WhPN	24.04.06	31.07.06	12.11.00	19.02.09
	°C	10,8	10,6		12,3	14,3	11,5	7.2
Grundwassertemperatur	C			7,9				7,2
pH-Wert	- C/a	3,9	3,9	4,3	3,8	4,3	3,8	4,3
elektr. Leitfähigkeit	μS/cm	2460	1676	2110	2310	2410	2280	2110
Sauerstoff	mg/l	1,3	3,1	5,8	3,6	5,2	2,8	2,7
Redoxspannung	mV	410	286	338	329	19	225	342
KB 4,3 (bei pH<4,3)	mmol/l	0,20	0,50	0,25	0,7		0,50	
KS 4,3 (bei pH>4,3)	mmol/l	44.4	4.0	4.0	5 4	0.7		4.0
KB 8,2 (bei pH<8,2)	mmol/l	11,1	4,9	4,8	5,4	8,7	5,2	4,6
KS 8,2 (bei pH>8,2)	mmol/l							
Laboranalytik								
pH-Wert		3,9	3,4	4,1	3,6	3,2	3,3	3,7
elektr. Leitfähigkeit	μS/cm	2430	2520	2240	2250	2600	2350	2190
Gesamttrockenrückstand	mg/l	3000	3470	3240	3470	2610	2830	2520
Filtrattrockenrückstand	mg/l	2700	1600	2430	2250	2520	2340	2160
Karbonathärte	mgCaO/I							
Gesamthärte	mmol/l	14,6	13,5	14,1	11,7	15,3	13,9	12,4
ges. wirksame Acidität	mmol/l	6,52						
TIC	mg/l	26,2	35	30	51	43	46	38
DOC	mg/l	5,3	6	6,4	5,8	6,5	5,9	6,1
Ammonium (N)	mg/l	3,66	2,7	2,61	3,09	3,61	2,92	2,52
Nitrat (N)	mg/l	<0,23	0,4	0,3	1,9	0,4	0,72	0,6
Nitrit (N)	mg/l	<0,015						
Phosphat-ortho (P)	mg/l	0,005	<0,007	0,013	<0,007	<0,007	0,007	0,008
Phosphor gesamt (P)	mg/l	<0,02	0,03	0,05	0,42	0,027	0,017	0,071
Sulfat	mg/l	1660	1040	1500	1300	1790	1460	1460
Chlorid	mg/l	10,1	6,9	84,4	16,5	10,5	10,4	12,8
Fluorid	mg/l	0,44						
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	<0,04	< 0,04
Calcium (Ca)	mg/l	560	517	544	446	589	530	472
Magnesium (Mg)	mg/l	15,3	15,7	12,4	14,2	14,3	16,3	14,5
Natrium (Na)	mg/l	5,64	5,92	5,3	6,5	5,7	5,5	7,4
Kalium (K)	mg/l	3,57	4,83	4,3	4,7	5,2	5,9	4,9
Eisen (Fe), gesamt	mg/l	36,6						
Eisen (Fe) gelöst	mg/l	51	36,3	30,1	22	49,3	39,6	22,6
Eisen (2+)	mg/l	46,8	33,7	28,6	20,1	45,3	33,9	20,1
Mangan (Mn) gesamt	mg/l	1,49						
Mangan (Mn) gelöst	mg/l		1,76	1,68	1,98	1,73	1,88	1,82
Silizium (Si)	mg/l	38,6	37,6	33	31,6	41,7	32,6	26,6
Aluminium (AI)	mg/l	34,4	32,8	27,4	28,6	41,2	26,2	28,7
Arsen (As)	mg/l		<0,005	0,023	<0,005	<0,005	0,014	0,015
Blei (Pb)	mg/l		<0,005	0,026	0,026	0,02	0,017	0,017
Cadmium (Cd)	mg/l		<0,003	0,003	0,001	0,002	0,002	0,002
Chrom (Cr) ges.	mg/l		<0,01	<0,01	<0,01	<0,01	<0,01	< 0,01
Kupfer (Cu)	mg/l		0,01	0,02	0,01	<0,01	<0,01	< 0,01
Nickel (Ni)	mg/l		0,27	0,21	0,2	0,25	0,24	0,19
Zink (Zn)	mg/l		0,75	0,47	0,62	0,54	0,55	0,44
IONENBILANZ								
Summe Kationen	mmoleq/l		24,6	22,7	19,5	24,5	22,7	20,0
Summe Anionen	mmoleq/l		13,6	23,4	18,7	24,5	20,4	21,3
Ionenbilanz-Fehler	%	1,5	28,9	-1,5	2,0	0,1	5,4	-3,2
CSB	mg/l	25,5	·	•		•		
1								

LMBV VT3 Seite 35 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61761

Markscheidernummer		61761	61761	61761	61761	61761	61761
Messstellenname		RKB18	RKB18	RKB18	RKB18	RKB18	RKB18
Grundwasserleiterzuordnui	1	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	27.04.09	30.07.09		26.05.10	22.02.12	13.08.15
Vor-Ort-Parameter		27.04.09	30.07.09	10.11.09	20.03.10	22.02.12	13.06.13
Grundwassertemperatur	°C	15,7	19,1	10,0	14,5	11,0	13,0
pH-Wert							
<u></u>	- μS/cm	4,5	3,9	4,6 1422	4,0 1066	4,8 1311	4,4 1350
elektr. Leitfähigkeit Sauerstoff		2030	2290				
	mg/l mV	2,0	1,5	1,1	1,8	1,8 144	3,1
Redoxspannung		430	275	309	176	144	574
KB 4,3 (bei pH<4,3)	mmol/l	0.0	0,7	0.0	0,1		< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	0,2	4.0	0,2	2.2	2.0	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	5,1	4,9	6,0	3,3	3,6	2,8
KS 8,2 (bei pH>8,2)	mmol/l						< 0,05
Laboranalytik		0.5	0.0	0.7	0.7	4.0	0.0
pH-Wert	0/	3,5	3,3	3,7	3,7	4,0	3,9
elektr. Leitfähigkeit	μS/cm	2110	2410	1420	1200	1190	1450
Gesamttrockenrückstand	mg/l	2450	2670	1310	1220	1810	
Filtrattrockenrückstand	mg/l	1980	2560	1280	1070	1140	
Karbonathärte	mgCaO/I	5,60	44.0	5,6	n.b.	7.0	-
Gesamthärte	mmol/l	12,2	14,2	8,1	5,3	7,3	6,6
ges. wirksame Acidität	mmol/l					2.4	7,7
TIC	mg/l	54	47	57	58	31	6,5
DOC	mg/l	4,1	4,9	5,5	4,3	5,6	4,9
Ammonium (N)	mg/l	1,22	2,59	0,98	0,99	0,94	0,93
Nitrat (N)	mg/l	1,1	0,1	< 0,02	0,4	< 0,05	< 0,1
Nitrit (N)	mg/l						
Phosphat-ortho (P)	mg/l	<0,007	<0,007	<0,007	<0,007	<0,007	< 0,005
Phosphor gesamt (P)	mg/l	0,140	0,015	0,088	0,230	0,380	< 0,005
Sulfat	mg/l	1320	1590	856	592	726	787
Chlorid	mg/l	8,4	6,7	4,6	1,1	5,8	10,8
Fluorid	mg/l						
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	471	546	310	200	280	218
Magnesium (Mg)	mg/l	11,3	11,7	9,3	6,6	8,5	9,8
Natrium (Na)	mg/l	5,8	6,3	5,6	3,9	4,5	3,6
Kalium (K)	mg/l	4,2	4,7	3,7	2,6	2,8	3,2
Eisen (Fe), gesamt	mg/l						
Eisen (Fe) gelöst	mg/l	6,44	21,9	8,5	8	4,7	86
Eisen (2+)	mg/l	3,2	12,7	7,12	5,3	3,44	49
Mangan (Mn) gesamt	mg/l						
Mangan (Mn) gelöst	mg/l	1,68	1,48	1,4	1,1	1,2	2,9
Silizium (Si)	mg/l	30,3	27,7	27	23	25	29
Aluminium (AI)	mg/l	23,3	24,4	11	5	8,7	23
Arsen (As)	mg/l	0,008	0,009	0,001	0,001	0,002	0,006
Blei (Pb)	mg/l	0,008	0,011	0,002	0,007	0,003	< 0,005
Cadmium (Cd)	mg/l	0,002	0,002	0,0014	0,0009	0,001	0,001
Chrom (Cr) ges.	mg/l	< 0,01	< 0,01	0,002	< 0,001	0,002	< 0,005
Kupfer (Cu)	mg/l	0,01	< 0,01	0,003	0,004	0,002	0,01
Nickel (Ni)	mg/l	0,15	0,23	0,12	0,08	0,13	0,20
Zink (Zn)	mg/l	0,35	0,58	0,21	0,13	0,35	0,57
IONENBILANZ							
Summe Kationen	mmoleq/l	18,8	21,4	13,4	9,0	12,2	19,0
Summe Anionen	mmoleq/l	18,9	22,1	13,2	9,6	11,3	16,7
		10,5	۷۷,۱	10,2	5,0	11,0	. • , .
Ionenbilanz-Fehler CSB	%	-0,1	-1,6	0,8	-3,1	3,6	6,5

LMBV VT3 Seite 36 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61771

Markscheidernummer	I	61771	61771	61771	61771	61771	61771	61771
Messstellenname		RKB19						
Grundwasserleiterzuordnur	1	Ki						
Probenahmedatum	ig I	26.07.07	21.01.08		31.07.08	13.11.08	18.02.09	28.04.09
Vor-Ort-Parameter		20.07.07	21.01.00	24.04.00	31.07.00	13.11.00	10.02.09	20.04.09
Grundwassertemperatur	°C	10,7	10,1	10,3	14,8	10,6	6,5	14,5
pH-Wert	-	4,0	3,7	3,7	3,8	3,8	4,2	4,3
elektr. Leitfähigkeit	μS/cm	4760	4150	4070	4010	4190	4210	3810
Sauerstoff	mg/l	2,2	4,0	4,8	4,1	5,6	2,5	1,1
Redoxspannung	mV	360	351	298	77	376	266	310
KB 4,3 (bei pH<4,3)	mmol/l	0,89	0,40	1,00	0,70	0,9	200	310
KS 4,3 (bei pH>4,3)	mmol/l	0,00	0,40	1,00	0,70	0,5		
KB 8,2 (bei pH<8,2)	mmol/l	41,2	14,5	19,9	24,8	19,9	17,4	23,4
KS 8,2 (bei pH>8,2)	mmol/l	71,2	14,0	10,0	24,0	10,0	17,7	20,4
Laboranalytik	11111101/1							
pH-Wert		3,7	3,7	3,4	3,1	3,2	3,8	3,4
elektr. Leitfähigkeit	μS/cm	4990	4120	4090	4160	4440	4190	3850
Gesamttrockenrückstand	mg/l	3000	5870	5370	5180	6130	6110	5420
Filtrattrockenrückstand	mg/l	2700	5650	5300	5130	5970	5560	5030
Karbonathärte	mgCaO/I	2,00	0000	0000	0100	0010	0000	0000
Gesamthärte	mmol/l	18,5	17,3	16,3	17,5	17,9	17,0	16,8
ges. wirksame Acidität	mmol/l	50,6	17,0	10,0	17,5	17,5	17,0	10,0
TIC	mg/l	61,9	99	107	106	102	104	110
DOC	mg/l	8,9	8,1	7	6,7	6,6	6,3	5,3
Ammonium (N)	mg/l	3,33	3,92	2,94	3,63	2,64	3,51	3,24
Nitrat (N)	mg/l	<0,23	0,3	0,9	0,1	0,70	0,07	0,07
Nitrit (N)	mg/l	<0,015	0,0	0,0	0,1	0,70	0,01	0,07
Phosphat-ortho (P)	mg/l	0,046	0,029	0,024	0,015	0,025	0,036	<0,007
Phosphor gesamt (P)	mg/l	<0,2	0,04	0,056	0,067	0,081	0,044	0,140
Sulfat	mg/l	4040	3510	3280	3310	3580	3500	2900
Chlorid	mg/l	18,5	20,7	38,4	13,2	16,8	15,5	20,5
Fluorid	mg/l	<0,2	20,1	00,1	10,2	10,0	10,0	20,0
Sulfid	mg/l	<0,1	<0,04	<0,04	<0,04	<0,04	< 0,04	< 0,04
Calcium (Ca)	mg/l	495	443	429	484	476	437	428
Magnesium (Mg)	mg/l	149	152	136	133	147	149	148
Natrium (Na)	mg/l	17,6	18,8	13,7	14,1	17,0	18,2	15,3
Kalium (K)	mg/l	11,4	22,1	20,4	13,3	22,3	12,6	19,2
Eisen (Fe), gesamt	mg/l	1120	,	,	, .	,-	1_,0	,_
Eisen (Fe) gelöst	mg/l	987	904	840	807	1020	934	722
Eisen (2+)	mg/l	816	880	801	730	885	878	706
Mangan (Mn) gesamt	mg/l	19,5						
Mangan (Mn) gelöst	mg/l	,	18,1	16,5	17,3	18,9	21,1	11,9
Silizium (Si)	mg/l	18,6	40,8	51,9	48,9	50,5	44	50,6
Aluminium (AI)	mg/l	40,8	15,3	16,1	15,3	19,4	18,4	11,6
Arsen (As)	mg/l	,	0,006	0,019	<0,005	0,028	0,069	0,03
Blei (Pb)	mg/l		<0,005	0,034	0,056	0,059	0,05	0,04
Cadmium (Cd)	mg/l		0,005	0,003	0,001	0,001	< 0,001	0,001
Chrom (Cr) ges.	mg/l		<0,01	<0,01	0,02	0,02	0,03	0,02
Kupfer (Cu)	mg/l		<0,01	<0,01	<0,01	<0,01	0,01	0,01
Nickel (Ni)	mg/l		0,05	<0,01	0,12	0,13	0,14	0,06
Zink (Zn)	mg/l		3,08	2,09	2,2	2,51	2,42	1,74
IONENBILANZ			·	·	,	,	·	·
Summe Kationen	mmoleq/l		46,3	43,6	43,2	50,5	47,4	40,9
Summe Anionen	mmoleq/l		48,3	45,7	44,2	47,5	49,0	39,5
Ionenbilanz-Fehler	%	-9,2	-2,1	-2,4	-1,1	3,0	-1,7	1,7
CSB	mg/l	157	·				·	

LMBV VT3 Seite 37 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61771

Markscheidernummer		61771	61771	61771	61771	61771
Messstellenname		RKB19	RKB19	RKB19	RKB19	RKB19
Grundwasserleiterzuordnur	<u> </u>	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19 	29.07.09	10.11.09	26.05.10	22.02.12	13.08.15
Vor-Ort-Parameter		23.07.03	10.11.03	20.03.10	22.02.12	13.00.13
Grundwassertemperatur	°C	18,5	10,1	12,2	7,4	12,6
pH-Wert	U	4,3	4,3	3,7	4,8	4,3
•	μS/cm	4060	4340	4230	3770	3850
elektr. Leitfähigkeit Sauerstoff	•					
	mg/l mV	2,4 247	1,2 283	2,1 241	1,9 190	1,5 478
Redoxspannung		247	203		190	
KB 4,3 (bei pH<4,3)	mmol/l		-	0,70	0.4	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	24.0	n.b.	40.0	0,1	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	31,9	33,9	19,8	34,2	17,7
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik		2.0	0 =	0 =	2.0	0 =
pH-Wert	0.1	3,3	3,7	3,7	3,9	3,7
elektr. Leitfähigkeit	μS/cm	4200	4280	4270	3870	4160
Gesamttrockenrückstand	mg/l	5330	5670	6500	5800	
Filtrattrockenrückstand	mg/l	5310	5510	6340	5130	
Karbonathärte	mgCaO/l		n.b.	n.b.	2,8	-
Gesamthärte	mmol/l	17,6	18,2	15,8	17,6	16,3
ges. wirksame Acidität	mmol/l					32,4
TIC	mg/l	110	110	110	97	49
DOC	mg/l	6,2	5,8	6,2	9	6,8
Ammonium (N)	mg/l	3,10	2,87	2,68	2,65	3,30
Nitrat (N)	mg/l	0,1	0,09	0,5	< 0,05	0,2
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,02	0,01	0,03	0,02	0,08
Phosphor gesamt (P)	mg/l	0,15	0,08	0,05	0,32	0,08
Sulfat	mg/l	3500	3580	3300	3510	2980
Chlorid	mg/l	20,9	27,3	23,4	16,6	14,3
Fluorid	mg/l					
Sulfid	mg/l	< 0,04	< 0,04	< 0,04	< 0,04	< 0,03
Calcium (Ca)	mg/l	459	500	420	490	477
Magnesium (Mg)	mg/l	150	140	130	130	107
Natrium (Na)	mg/l	16,3	17	17	17	12,1
Kalium (K)	mg/l	12,8	13,0	13,0	13,0	14,2
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	880	960	855	910	860
Eisen (2+)	mg/l	766	783	851	768	830
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	18,9	21	18	20	16
Silizium (Si)	mg/l	36,9	54	48	41	50
Aluminium (AI)	mg/l	14,5	15	12	9,6	20
Arsen (As)	mg/l	0,057	0,03	0,044	0,037	0,072
Blei (Pb)	mg/l	0,067	0,007	0,006	0,002	< 0,005
Cadmium (Cd)	mg/l	0,001	0,0003	< 0,0002	0,0002	< 0,001
Chrom (Cr) ges.	mg/l	0,03	0,005	0,005	0,007	0,006
Kupfer (Cu)	mg/l	0,01	0,001	0,004	< 0,001	< 0,005
Nickel (Ni)	mg/l	0,13	0,13	0,15	0,1	0,27
Zink (Zn)	mg/l	2,68	2,3	2,6	3	3,1
IONENBILANZ	<u> </u>	,	,-	, -		,
Summe Kationen	mmoleq/l	42,5	48,9	42,6	46,2	68,5
Summe Anionen	mmoleq/l	48,7	50,4	45,9	50,7	62,5
Ionenbilanz-Fehler	%	-6,8	-1,5	-3,8	-4,6	4,6
CSB	mg/l	-,-	.,,,	-,-	.,•	.,,
	9, .					

LMBV VT3 Seite 38 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61781

Markscheidernummer		61781	61781	61781	61781	61781	61781	61781
Messstellenname		RKB20	RKB20	RKB20	RKB20	RKB20	RKB20	RKB20
Grundwasserleiterzuordnur	1	Ki	Ki	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	ig I	26.07.07	21.01.08		31.07.08	13.11.08	18.02.09	28.04.09
Vor-Ort-Parameter		20.07.07	21.01.00	24.04.00	31.07.00	13.11.00	10.02.09	20.04.09
Grundwassertemperatur	°C	11,3	10,9	12,5	15	11,1	6,7	14,8
pH-Wert	C	3,7	3,9	3,5	3,7	3,7	3,8	4,0
elektr. Leitfähigkeit	μS/cm	3060	3080	2950	3080	2920	2940	2830
Sauerstoff	mg/l	3,4	4,3	3,6	6,7	4,8	2,0	1,2
Redoxspannung	mV	375	282	304	91	363	318	351
KB 4,3 (bei pH<4,3)	mmol/l	0,69	0,8	0,8	1,9	0,7	0,5	0,50
KS 4,3 (bei pH>4,3)		0,09	0,6	0,0	1,9	0,1	0,5	0,50
KB 8,2 (bei pH<8,2)	mmol/l mmol/l	16,8	8,7	13,8	15,9	11,3	11,8	12,7
KS 8,2 (bei pH>8,2)	mmol/l	10,0	0,1	13,0	15,9	11,3	11,0	12,1
	11111101/1							
Laboranalytik		3,7	3,5	2.5	2.4	2 5	2.5	2.2
pH-Wert	uC/am			3,5	3,1	3,5	3,5	3,2
elektr. Leitfähigkeit	μS/cm	3210	3470	3090	3170	3060	2950	2810
Gesamttrockenrückstand Filtrattrockenrückstand	mg/l	4100	4130	4590	3840	4120 3740	4090	3640
	mg/l	4000	3660	3460	3540	3740	3470	3410
Karbonathärte Gesamthärte	mgCaO/I	15	1.1	12.0	146	111	14.0	12.0
	mmol/l		14	13,9	14,6	14,4	14,8	13,8
ges. wirksame Acidität	mmol/l	20,8	FO	70	70	70	60	70
TIC DOC	mg/l	36,2	59	73 28	72 27	73 29	69 30	70 24
Ammonium (N)	mg/l	49,6	40			5,36		
` '	mg/l	5,28	6,02	5,92	6,16		5,96	5,52
Nitrat (N) Nitrit (N)	mg/l	<0,23	0,3	0,4	0,1	0,80	0,03	0,03
Phosphat-ortho (P)	mg/l	<0,015 0,003	0,02	0,01	0,005	0,019	<0,007	<0,007
Phosphor gesamt (P)	mg/l	<0,2			0,005	0,019	0,007	0,140
Sulfat	mg/l	1920	0,03 2260	0,18 2130	2120	2180	2090	2060
Chlorid	mg/l	6,6	10,6	10,2	6,9	12,3	6,8	11,1
Fluorid	mg/l	<0,2	10,6	10,2	0,9	12,3	0,0	11,1
Sulfid	mg/l	<0,2	0,13	0,07	0,044	0.00	0,15	0.1
Calcium (Ca)	mg/l	542	501	508	537	0,09 525	550	0,1 501
` ,	mg/l	34,9	35,4	28,6		32,1	25,6	30,9
Magnesium (Mg)	mg/l	7,22	8,27	4,9	29,8 5,9	6,3		12,4
Natrium (Na) Kalium (K)	mg/l		12	9,3		14,3	5,4	
Eisen (Fe), gesamt	mg/l	11,9 436	12	9,3	8,3	14,3	7,9	8,6
Eisen (Fe) gelöst	mg/l	416	416	353	341	409	390	334
Eisen (2+)	mg/l mg/l	314	350	336	328	392	331	334
Mangan (Mn) gesamt	mg/l	4,74	330	330	320	392	331	334
Mangan (Mn) gelöst	mg/l	4,74	4,8	4,18	4,61	6,51	3,76	3,23
Silizium (Si)	mg/l	12,3	46,2	52,7	54,7	55,2	50,7	57,2
Aluminium (AI)	mg/l	49,4	16	19,2	19,4	19,7	20,3	16,9
Arsen (As)	mg/l	→ ∂, →	<0,005	0,028	0,01	0,021	0,052	0,033
Blei (Pb)	mg/l		<0,005	0,028	0,01	0,021	0,032	0,033
Cadmium (Cd)	mg/l		0,003	0,027	0,045	0,035	0,023	0,020
Chrom (Cr) ges.	mg/l		<0,004	<0,003	0,001	0,001	0,001	0,002
Kupfer (Cu)	mg/l		0,01	<0,01	<0,03	<0,03	< 0,03	0,03
Nickel (Ni)	mg/l		0,01	0,17	0,22	0,23	0,26	0,01
Zink (Zn)	mg/l		1,64	1,46	1,27	1,44	1,31	1,14
IONENBILANZ	ilig/i		1,04	1,40	1,41	1,77	1,01	1,17
Summe Kationen	mmoleq/l		30,8	29,3	29,9	32,0	30,6	28,5
Summe Anionen	mmoleq/l		31,7	29,3	29,9	29,9	27,4	29,0
Ionenbilanz-Fehler	%	4,4	-1,6	-0,7	1,3	3,3	5,6	-0,8
CSB	mg/l	224	1,0	0,1	1,0	0,0	0,0	3,0
000	1119/1	44						

LMBV VT3 Seite 39 von 50

Witznitz Messplatz Kippe Zeitreihen/RKP Kippe

Messstelle 61781

Markscheidernummer		61781	61781	61781	61781	61781
Messstellenname		RKB20	RKB20	RKB20	RKB20	RKB20
Grundwasserleiterzuordnur	1	Ki	Ki	Ki	Ki	Ki
Probenahmedatum	19 	29.07.09		26.05.10	22.02.12	13.08.15
Vor-Ort-Parameter		29.07.09	11.11.09	20.03.10	22.02.12	13.00.13
Grundwassertemperatur	°C	18,3	10,7	12,1	8,9	12,3
pH-Wert	U	4,6	4,0	3,5	3,8	3,7
elektr. Leitfähigkeit	μS/cm	2920	3110	2970	2880	2730
Sauerstoff	•					
	mg/l mV	2,5	1,1	1,9 289	1,9	2,4
Redoxspannung		318	322		213	568
KB 4,3 (bei pH<4,3)	mmol/l	0.0	0,5	0,8	0,4	3,1
KS 4,3 (bei pH>4,3)	mmol/l	0,9	- 40.4	44.0	40.0	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	16,9	19,4	11,3	19,3	12,2
KS 8,2 (bei pH>8,2)	mmol/l					< 0,05
Laboranalytik		0.4	0.5	0.5	0.5	0.0
pH-Wert	0.1	3,4	3,5	3,5	3,5	3,3
elektr. Leitfähigkeit	μS/cm	2960	3030	2990	2930	2960
Gesamttrockenrückstand	mg/l	3520	4050	3990	5140	
Filtrattrockenrückstand	mg/l	3410	3610	3940	3310	
Karbonathärte	mgCaO/l		n.b.	n.b.		-
Gesamthärte	mmol/l	14,0	14,0	13,4	15,3	14,9
ges. wirksame Acidität	mmol/l					14,4
TIC	mg/l	70	83	78	50	17
DOC	mg/l	25	24	28	38	27
Ammonium (N)	mg/l	5,32	5,72	5,24	5,38	6,2
Nitrat (N)	mg/l	0,1	0,1	0,4	< 0,05	< 0,1
Nitrit (N)	mg/l					
Phosphat-ortho (P)	mg/l	0,03	<0,007	<0,007	0,01	< 0,005
Phosphor gesamt (P)	mg/l	0,22	0,32	0,06	0,49	< 0,005
Sulfat	mg/l	2130	2150	1980	2280	2380
Chlorid	mg/l	12,0	8,1	7,8	11,6	8,4
Fluorid	mg/l					
Sulfid	mg/l	0,12	0,08	< 0,04	0,21	< 0,03
Calcium (Ca)	mg/l	518	510	490	560	547
Magnesium (Mg)	mg/l	25,6	30	29	32	29,9
Natrium (Na)	mg/l	5,4	5,9	5,6	6	5,5
Kalium (K)	mg/l	13,9	8,9	7,7	8,0	10,5
Eisen (Fe), gesamt	mg/l					
Eisen (Fe) gelöst	mg/l	355	390	335	360	290
Eisen (2+)	mg/l	306	264	335	333	260
Mangan (Mn) gesamt	mg/l					
Mangan (Mn) gelöst	mg/l	3,22	3,9	3,4	3,7	3,4
Silizium (Si)	mg/l	40,8	55	53	47	56
Aluminium (AI)	mg/l	15,9	16	14	18	22
Arsen (As)	mg/l	0,040	0,015	0,033	0,019	0,021
Blei (Pb)	mg/l	0,029	0,005	0,005	0,01	< 0,005
Cadmium (Cd)	mg/l	0,001	0,001	0,0011	0,0011	< 0,001
Chrom (Cr) ges.	mg/l	0,03	0,02	0,018	0,02	0,018
Kupfer (Cu)	mg/l	0,01	0,005	0,005	0,01	0,011
Nickel (Ni)	mg/l	0,27	0,23	0,24	0,31	0,36
Zink (Zn)	mg/l	1,64	1,2	1,3	1,3	0,96
IONENBILANZ		,	. ,	.,,,	.,~	-,
Summe Kationen	mmoleq/l	28,2	30,3	28,4	31,2	45,0
Summe Anionen	mmoleq/l	30,1	30,4	28,0	32,1	49,8
Ionenbilanz-Fehler	%	-3,2	-0,2	0,7	-1,3	-5,1
CSB	mg/l	٥,٢	٥,٢	٥,,	1,0	٥, ١
000	1119/1					

LMBV VT3 Seite 40 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70591

Markscheiderhummer 1301	Markachaidaraummar	<u> </u>	70501	70501
Grundwasserleiterzuordnung	Markscheidernummer		70591	70591
Probenahmedatum				
Vor-Ort-Parameter Grundwassertemperatur pH-Wert - 3,4 3,5 elektr. Leitfähigkeit μS/cm 4133 4360 3,5 elektr. Leitfähigkeit μS/cm 4133 4360 3,6 elektr. Leitfähigkeit mg/l 2,5 558 KB 4,3 (bei pH<4,3)		ng		
Grundwassertemperatur			17.01.14	13.08.15
pH-Wert - 3,4 3,5 elektr. Leitfähigkeit μS/cm 4133 4360 Sauerstoff mg/l 2,5 Redoxspannung mV 558 KB 4,3 (bei pH<4,3)				
elektr. Leitfähigkeit μS/cm 4133 4360 Sauerstoff mg/l 2,5 Redoxspannung mV 558 KB 4,3 (bei pH<4,3)		°C		
Sauerstoff mg/l 2,5 Redoxspannung mV 558 KB 4,3 (bei pH<4,3)		-	3,4	
Redoxspannung mV 558 KB 4,3 (bei pH<4,3)		μS/cm	4133	4360
KB 4,3 (bei pH<4,3)	Sauerstoff	mg/l		2,5
KS 4,3 (bei pH>4,3) mmol/I - < 0,05		mV		558
KB 8,2 (bei pH<8,2) mmol/I 62,5 29,1 KS 8,2 (bei pH>8,2) mmol/I - < 0,05 Laboranalytik pH-Wert 3,1 elektr. Leitfähigkeit µS/cm 4770 Gesamtkrockenrückstand mg/I 7700 Filtrattrockenrückstand mg/I 7200 Karbonathärte mgCaO/I - Gesamthärte mmol/I 16,7 15,9 ges. wirksame Acidität mmol/I 49,7 11 DOC mg/I - 11 DOC mg/I 1,66 3,3 Nitrat (N) mg/I 40,1 < 0,1 Ammonium (N) mg/I 1,66 3,3 Nitrat (N) mg/I 0,01 < 0,1 Nitrit (N) mg/I 0,05 Phosphat-ortho (P) mg/I 0,05 Phosphat-ortho (P) mg/I 0,23 0,078 Sulfat mg/I 0,23 0,078 Sulfat mg/I 0,6	KB 4,3 (bei pH<4,3)	mmol/l	1,1	11,40
KS 8,2 (bei pH>8,2) mmol/I - < 0,05 Laboranalytik pH-Wert 3,1 elektr. Leitfähigkeit μS/cm 4770 Gesamttrockenrückstand Filtrattrockenrückstand Karbonathärte mg/I 7700 7700 Gesamthärte Gesamthärte mmol/I 16,7 15,9 ges. wirksame Acidität mmol/I 49,7 11 DOC mg/I - 11 Ammonium (N) mg/I 1,66 3,3 Nitrat (N) mg/I 40,1 < 0,1	KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
Laboranalytik pH-Wert 3,1 elektr. Leitfähigkeit μS/cm 4770 Gesamttrockenrückstand mg/l 7200 Karbonathärte mgCaO/l - Gesamthärte mmol/l 16,7 15,9 ges. wirksame Acidität mmol/l 49,7 11 DOC mg/l - 11 DOC mg/l 1,66 3,3 Nitrat (N) mg/l -0,1 < 0,1	KB 8,2 (bei pH<8,2)	mmol/l	62,5	29,1
Laboranalytik pH-Wert 3,1 elektr. Leitfähigkeit μS/cm 4770 Gesamttrockenrückstand mg/l 7200 Karbonathärte mgCaO/l - Gesamthärte mmol/l 16,7 15,9 ges. wirksame Acidität mmol/l 49,7 11 DOC mg/l - 11 DOC mg/l 1,66 3,3 Nitrat (N) mg/l -0,1 < 0,1	KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
pH-Wert μS/cm 4770 elektr. Leitfähigkeit μS/cm 4770 Gesamttrockenrückstand mg/l 7200 Karbonathärte mgCaO/l - Gesamthärte mmol/l 16,7 15,9 ges. wirksame Acidität mmol/l 49,7 11 DOC mg/l - 11 DOC mg/l 1,66 3,3 Nitrat (N) mg/l <0,1				
elektr. Leitfähigkeit μS/cm 4770 Gesamttrockenrückstand mg/l 7700 Filtrattrockenrückstand mg/l 7200 Karbonathärte mgCaO/l - Gesamthärte mmol/l 16,7 15,9 ges. wirksame Acidität mmol/l 49,7 11 DOC mg/l - 11 Ammonium (N) mg/l 12,4 7,7 Ammonium (N) mg/l 12,4 7,7 Ammonium (N) mg/l 1,66 3,3 Nitrat (N) mg/l <0,1				3,1
Gesamttrockenrückstand Filtrattrockenrückstand mg/l 7200 Karbonathärte mgCaO/l 16,7 15,9 Gesamthärte ges. wirksame Acidität TIC mg/l - DOC mg/l 1,66 3,3 11,0 11,0 Ammonium (N) mg/l 1,66 3,3 3,0,078 3,9 3,0,078 3,9 3,0,078 3,9 3,0,078 3,9 3,0,078 3,9 3,0,078 3,9 3,0,078 <td< td=""><td>•</td><td>uS/cm</td><td></td><td></td></td<>	•	uS/cm		
Filtrattrockenrückstand mg/l 7200 Karbonathärte mgCaO/l - Gesamthärte mmol/l 16,7 15,9 ges. wirksame Acidität mmol/l 49,7 TIC mg/l - 11 DOC mg/l 1,66 3,3 Nitrat (N) mg/l <0,1			7700	
Karbonathärte mgCaO/I - Gesamthärte mmol/I 16,7 15,9 ges. wirksame Acidität mmol/I 49,7 TIC mg/I - 11 DOC mg/I 1,66 3,3 Nitrat (N) mg/I 1,66 3,3 Nitrat (N) mg/I 0,01 < 0,1		•		
Gesamthärte mmol/I 16,7 15,9 ges. wirksame Acidität mmol/I 49,7 TIC mg/I - 11 DOC mg/I 12,4 7,7 Ammonium (N) mg/I 1,66 3,3 Nitrat (N) mg/I <0,1				_
ges. wirksame Acidität mmol/I 49,7 TIC mg/I - 11 DOC mg/I 12,4 7,7 Ammonium (N) mg/I 1,66 3,3 Nitrat (N) mg/I <0,1			16 7	15.9
TIC mg/l - 11 DOC mg/l 12,4 7,7 Ammonium (N) mg/l 1,66 3,3 Nitrat (N) mg/l <0,1			10,1	
DOC mg/l 12,4 7,7 Ammonium (N) mg/l 1,66 3,3 Nitrat (N) mg/l <0,1			_	
Ammonium (N) mg/l 1,66 3,3 Nitrat (N) mg/l <0,1			12 4	
Nitrat (N) mg/l <0,1 < 0,1 Nitrit (N) mg/l <0,05				
Nitrit (N) mg/l <0,05 Phosphat-ortho (P) mg/l 0,21 0,08 Phosphor gesamt (P) mg/l 0,23 0,078 Sulfat mg/l 5010 3990 Chlorid mg/l 53,4 37,2 Fluorid mg/l 0,6 53,4 37,2 Fluorid mg/l 0,6 53,4 37,2 Fluorid mg/l 0,6 50,03 60,03 60,03 Sulfid mg/l 0,0 60,03	` '			
Phosphat-ortho (P) mg/l 0,21 0,08 Phosphor gesamt (P) mg/l 0,23 0,078 Sulfat mg/l 5010 3990 Chlorid mg/l 53,4 37,2 Fluorid mg/l 0,6 Sulfid 7,003 Sulfid mg/l 40,1 <0,03	` '			\ 0,1
Phosphor gesamt (P) mg/l 0,23 0,078 Sulfat mg/l 5010 3990 Chlorid mg/l 53,4 37,2 Fluorid mg/l 0,6 37,2 Sulfid mg/l 0,1 < 0,03				0.08
Sulfat mg/l 5010 3990 Chlorid mg/l 53,4 37,2 Fluorid mg/l 0,6 0,03 Sulfid mg/l <0,1				
Chlorid mg/l 53,4 37,2 Fluorid mg/l 0,6 0,03 Sulfid mg/l <0,1				
Fluorid mg/l 0,6 Sulfid mg/l <0,1				
Sulfid mg/l <0,1 < 0,03 Calcium (Ca) mg/l 510 492 Magnesium (Mg) mg/l 96,7 87,8 Natrium (Na) mg/l 96,7 87,8 Natrium (Na) mg/l 96,7 87,8 Natrium (Na) mg/l 62,8 48,1 Kalium (K) mg/l 27,5 28,9 Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l <0,005				31,2
Calcium (Ca) mg/l 510 492 Magnesium (Mg) mg/l 96,7 87,8 Natrium (Na) mg/l 62,8 48,1 Kalium (K) mg/l 27,5 28,9 Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005				< 0.02
Magnesium (Mg) mg/l 96,7 87,8 Natrium (Na) mg/l 62,8 48,1 Kalium (K) mg/l 27,5 28,9 Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005				
Natrium (Na) mg/l 62,8 48,1 Kalium (K) mg/l 27,5 28,9 Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 210 200 Arsen (As) mg/l < 0,038				
Kalium (K) mg/l 27,5 28,9 Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 119 62 Silizium (Si) mg/l 210 200 Arsen (As) mg/l 210 200 Arsen (As) mg/l < 0,038				
Eisen (Fe), gesamt mg/l 1000 Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 119 62 Silizium (Si) mg/l 210 200 Arsen (As) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005	` '			
Eisen (Fe) gelöst mg/l 961 960 Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 119 62 Silizium (Si) mg/l 210 200 Arsen (As) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005				28,9
Eisen (2+) mg/l 936 890 Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005				000
Mangan (Mn) gesamt mg/l 5,9 Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005	` , 0			
Mangan (Mn) gelöst mg/l 6 Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005				890
Silizium (Si) mg/l 119 62 Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005			5,9	•
Aluminium (Al) mg/l 210 200 Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005			440	
Arsen (As) mg/l 0,038 Blei (Pb) mg/l < 0,005	` '			
Blei (Pb) mg/l < 0,005 Cadmium (Cd) mg/l < 0,001	• ,		210	
Cadmium (Cd) mg/l < 0,001 Chrom (Cr) ges. mg/l 0,015 Kupfer (Cu) mg/l 0,015 Nickel (Ni) mg/l 0,5 Zink (Zn) mg/l 1,2 IONENBILANZ summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4				
Chrom (Cr) ges. mg/l 0,015 Kupfer (Cu) mg/l 0,015 Nickel (Ni) mg/l 0,5 Zink (Zn) mg/l 1,2 IONENBILANZ Summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4	()			
Kupfer (Cu) mg/l 0,015 Nickel (Ni) mg/l 0,5 Zink (Zn) mg/l 1,2 IONENBILANZ Summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4				
Nickel (Ni) mg/l 0,5 Zink (Zn) mg/l 1,2 IONENBILANZ Summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4				
Zink (Zn) mg/l 1,2 IONENBILANZ mmoleq/l 95,2 93,7 Summe Kationen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4				
IONENBILANZ Summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4	` ,			
Summe Kationen mmoleq/l 95,2 93,7 Summe Anionen mmoleq/l -105,9 84,1 Ionenbilanz-Fehler % -5,3 5,4		mg/l		1,2
Summe Anionen mmoleq/l -105,9 84,1 lonenbilanz-Fehler % -5,3 5,4				
Ionenbilanz-Fehler % -5,3 5,4				
CSB mg/l 210				5,4
	CSB	mg/l	210	

LMBV VT3 Seite 41 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70601

NA-de-de-de-de-management		70004	70004
Markscheidernummer		70601	70601
Messstellenname		1302	1302
Grundwasserleiterzuordnur	ng	K	K
Probenahmedatum		17.01.14	13.08.15
Vor-Ort-Parameter			
Grundwassertemperatur	°C		13,4
pH-Wert	-	4,0	4,4
elektr. Leitfähigkeit	μS/cm	3445	4420
Sauerstoff	mg/l		2,7
Redoxspannung	mV		446
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l		< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	30,5	17,6
KS 8,2 (bei pH>8,2)	mmol/l	_	< 0,05
Laboranalytik			,
pH-Wert			4
elektr. Leitfähigkeit	μS/cm		4820
Gesamttrockenrückstand	mg/l	5400	1020
Filtrattrockenrückstand	mg/l	5300	
Karbonathärte	mgCaO/l	3300	_
Gesamthärte	mmol/l	22,6	21,3
ges. wirksame Acidität	mmol/l	22,0	36,4
<u> </u>			
TIC	mg/l	- E 7E	8,6 5
DOC	mg/l	5,75	
Ammonium (N)	mg/l	2,98	3,9
Nitrat (N)	mg/l	<0,5	< 0,1
Nitrit (N)	mg/l	<0,05	0.005
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	<0,01	< 0,005
Sulfat	mg/l	3380	3850
Chlorid	mg/l	12,9	15,8
Fluorid	mg/l	0,87	
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	582	475
Magnesium (Mg)	mg/l	196	229
Natrium (Na)	mg/l	18,3	21
Kalium (K)	mg/l	16,5	21,5
Eisen (Fe), gesamt	mg/l	830	
Eisen (Fe) gelöst	mg/l	687	950
Eisen (2+)	mg/l	687	950
Mangan (Mn) gesamt	mg/l	20	
Mangan (Mn) gelöst	mg/l		32
Silizium (Si)	mg/l	54,6	35
Aluminium (AI)	mg/l	19	16
Arsen (As)	mg/l		0,037
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,13
Kupfer (Cu)	mg/l		< 0,005
Nickel (Ni)	mg/l		5,9
Zink (Zn)	mg/l		0,99
IONENBILANZ	1119/1		0,99
Summe Kationen	mmoleq/l	72,9	81,7
Summe Anionen	mmoleq/l	-70,8	80,6
	mmoleq/i		
Ionenbilanz-Fehler		1,5	0,6
CSB	mg/l	120	

LMBV VT3 Seite 42 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70611

N A o ul co o lo o i al o uno cues no o u		70044	70044
Markscheidernummer		70611	70611
Messstellenname		1303	1303
Grundwasserleiterzuordnur	ng	K	K
Probenahmedatum		17.01.14	13.08.15
Vor-Ort-Parameter			
Grundwassertemperatur	°C		12,4
pH-Wert	-	4,0	4,1
elektr. Leitfähigkeit	μS/cm	4094	4890
Sauerstoff	mg/l		4,4
Redoxspannung	mV		472
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	0,80
KS 4,3 (bei pH>4,3)	mmol/l		< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	50,5	18,40
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			,
pH-Wert			3,8
elektr. Leitfähigkeit	μS/cm		5350
Gesamttrockenrückstand	mg/l	7200	0000
Filtrattrockenrückstand	mg/l	7100	
Karbonathärte	mgCaO/l	7 100	_
Gesamthärte	mmol/l	23,37	19,6
ges. wirksame Acidität	mmol/l	23,37	49,4
<u> </u>			28
TIC	mg/l	4.02	
DOC	mg/l	4,03	3,6
Ammonium (N)	mg/l	0,944	2,5
Nitrat (N)	mg/l	0,52	< 0,1
Nitrit (N)	mg/l	<0,05	0.005
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	<0,01	< 0,005
Sulfat	mg/l	4330	4550
Chlorid	mg/l	46,9	45,8
Fluorid	mg/l	1,25	
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	566	463
Magnesium (Mg)	mg/l	225	196
Natrium (Na)	mg/l	3,42	32,8
Kalium (K)	mg/l	19,7	16,8
Eisen (Fe), gesamt	mg/l	1300	
Eisen (Fe) gelöst	mg/l	1260	1200
Eisen (2+)	mg/l	1260	1100
Mangan (Mn) gesamt	mg/l	29	
Mangan (Mn) gelöst	mg/l		36
Silizium (Si)	mg/l	16,5	9,9
Aluminium (AI)	mg/l	21	30
Arsen (As)	mg/l		0,022
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,01
Kupfer (Cu)	mg/l		0,019
Nickel (Ni)	mg/l		0,43
Zink (Zn)	mg/l		2,1
IONENBILANZ	1119/1		۷,۱
Summe Kationen	mmoleq/l	94,7	103,7
Summe Anionen	mmoleq/l	-91,6	96,0
	mmoleq/i		
Ionenbilanz-Fehler		1,7	3,9
CSB	mg/l	190	

LMBV VT3 Seite 43 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70621

Markscheidernummer		70621	70621
Messstellenname		1304	1304
Grundwasserleiterzuordnur	10	K	K
Probenahmedatum	ly	17.01.14	13.08.15
		17.01.14	13.00.13
Vor-Ort-Parameter	°C		12.2
Grundwassertemperatur	10	0.0	13,2
pH-Wert	-	3,9	3,8
elektr. Leitfähigkeit	μS/cm	5371	6760
Sauerstoff	mg/l		2,5
Redoxspannung	mV		500
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	2,94
KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	98,4	38,00
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			3,2
elektr. Leitfähigkeit	μS/cm		7480
Gesamttrockenrückstand	mg/l	12000	
Filtrattrockenrückstand	mg/l	12000	
Karbonathärte	mgCaO/I		-
Gesamthärte	mmol/l	27,97	23,4
ges. wirksame Acidität	mmol/l	,	91,1
TIC	mg/l	-	20
DOC	mg/l	4,91	4,3
Ammonium (N)	mg/l	0,794	3,3
Nitrat (N)	mg/l	<0,5	< 0,1
Nitrit (N)	mg/l	<0,05	•, .
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	<0,01	< 0,005
Sulfat	mg/l	6610	7870
Chlorid	mg/l	27,6	29,4
Fluorid	mg/l	<0,5	20,4
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	522	436
Magnesium (Mg)	mg/l	363	305
Natrium (Na)	mg/l	4,19	31
Kalium (K)	mg/l	20,4	19
	mg/l	3000	19
Eisen (Fe), gesamt Eisen (Fe) gelöst		2500	2800
` , •	mg/l		2400
Eisen (2+)	mg/l	2500	2400
Mangan (Mn) gesamt	mg/l	67	74
Mangan (Mn) gelöst	mg/l	22.0	71
Silizium (Si)	mg/l	33,8	25
Aluminium (Al)	mg/l	12	17
Arsen (As)	mg/l		0,014
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,006
Kupfer (Cu)	mg/l		0,006
Nickel (Ni)	mg/l		0,11
Zink (Zn)	mg/l		4,8
IONENBILANZ			
Summe Kationen	mmoleq/l	149,3	161,5
Summe Anionen	mmoleq/l	-138,4	164,7
Ionenbilanz-Fehler	%	3,8	-1,0
CSB	mg/l	360	

LMBV VT3 Seite 44 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70631

Markscheidernummer	1	70621	70621
		70631	70631
Messstellenname		1305	1305
Grundwasserleiterzuordnur	19	K	K
Probenahmedatum		17.01.14	13.08.15
Vor-Ort-Parameter	0.0		
Grundwassertemperatur	°C		11,2
pH-Wert	-	5,0	5,2
elektr. Leitfähigkeit	μS/cm	3626	4380
Sauerstoff	mg/l		2,6
Redoxspannung	mV		359
KB 4,3 (bei pH<4,3)	mmol/l	-	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	0,42	0,4
KB 8,2 (bei pH<8,2)	mmol/l	33	15,8
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik	•		
pH-Wert			4,6
elektr. Leitfähigkeit	μS/cm		4750
Gesamttrockenrückstand	mg/l	5900	
Filtrattrockenrückstand	mg/l	5600	
Karbonathärte	mgCaO/l	0000	11,22
Gesamthärte	mmol/l	23	20,1
ges. wirksame Acidität	mmol/l	20	35,7
TIC	mg/l	_	36
DOC	mg/l	10,6	9,9
		3,33	5
Ammonium (N)	mg/l		
Nitrat (N)	mg/l	<0,5	< 0,1
Nitrit (N)	mg/l	<0,05	0.007
Phosphat-ortho (P)	mg/l	<0,05	0,007
Phosphor gesamt (P)	mg/l	<0,01	0,007
Sulfat	mg/l	3590	3720
Chlorid	mg/l	20,7	22,4
Fluorid	mg/l	<0,5	
Sulfid	mg/l	<0,1	
Calcium (Ca)	mg/l	619	494
Magnesium (Mg)	mg/l	183	188
Natrium (Na)	mg/l	7,21	21
Kalium (K)	mg/l	21,3	23,6
Eisen (Fe), gesamt	mg/l	870	
Eisen (Fe) gelöst	mg/l	840	1100
Eisen (2+)	mg/l	840	1100
Mangan (Mn) gesamt	mg/l	39	
Mangan (Mn) gelöst	mg/l		82
Silizium (Si)	mg/l	66,9	
Aluminium (AI)	mg/l	1	
Arsen (As)	mg/l		
Blei (Pb)	mg/l		
Cadmium (Cd)	mg/l		
Chrom (Cr) ges.	mg/l		
Kupfer (Cu)	mg/l		
Nickel (Ni)	mg/l		
Zink (Zn)	mg/l		
IONENBILANZ	9/1		
Summe Kationen	mmoleq/l	78,5	84,9
Summe Anionen	mmoleq/I	-75,7	78,1
Ionenbilanz-Fehler	%	1,8	4,2
			7,∠
CSB	mg/l	140	

LMBV VT3 Seite 45 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70641

Markachaidarausarar	I	70644	70644
Markscheidernummer		70641	70641 1306
Messstellenname		1306 K	1306 K
Grundwasserleiterzuordnur	ig I	17.01.14	13.08.15
Probenahmedatum		17.01.14	13.06.15
Vor-Ort-Parameter	0.0		40.5
Grundwassertemperatur	°C		12,5
pH-Wert	-	3,8	4,1
elektr. Leitfähigkeit	μS/cm	4861	6020
Sauerstoff	mg/l		1,6
Redoxspannung	mV		484
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	3,3
KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	85,4	31,1
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			3,3
elektr. Leitfähigkeit	μS/cm		6660
Gesamttrockenrückstand	mg/l	10000	
Filtrattrockenrückstand	mg/l	10000	
Karbonathärte	mgCaO/l		-
Gesamthärte	mmol/l	20,99	19,6
ges. wirksame Acidität	mmol/l	-,	85,7
TIC	mg/l	_	28
DOC	mg/l	5,51	5
Ammonium (N)	mg/l	1,83	4,3
Nitrat (N)	mg/l	<0,1	< 0,1
Nitrit (N)	mg/l	<0,05	. 0,1
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	0,09	< 0,005
Sulfat	mg/l	5950	6970
Chlorid	mg/l	26,4	23,1
Fluorid	mg/l	0,92	20,1
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	493	450
Magnesium (Mg)	mg/l	211	204
Natrium (Na)	mg/l	6,16	23,7
Kalium (K)			
	mg/l	19,8	24,4
Eisen (Fe), gesamt	mg/l	2200 2190	2500
Eisen (Fe) gelöst Eisen (2+)	mg/l	2190	
. ,	mg/l		2200
Mangan (Mn) gesamt	mg/l	31	40
Mangan (Mn) gelöst	mg/l	40.0	40
Silizium (Si)	mg/l	43,8	39
Aluminium (Al)	mg/l	49	80
Arsen (As)	mg/l		0,036
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,011
Kupfer (Cu)	mg/l		< 0,005
Nickel (Ni)	mg/l		0,28
Zink (Zn)	mg/l		3,1
IONENBILANZ			
Summe Kationen	mmoleq/l	124,8	147,0
Summe Anionen	mmoleq/l	-124,8	145,8
Ionenbilanz-Fehler	%	0,0	0,4
CSB	mg/l	310	

LMBV VT3 Seite 46 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70651

<u> </u>	ı		
Markscheidernummer		70651	70651
Messstellenname		1307	1307
Grundwasserleiterzuordnur	ng	K	K
Probenahmedatum		17.01.14	13.08.15
Vor-Ort-Parameter			
Grundwassertemperatur	°C		12,6
pH-Wert	-	3,5	5,7
elektr. Leitfähigkeit	μS/cm	3294	3360
Sauerstoff	mg/l		2,8
Redoxspannung	mV		330
KB 4,3 (bei pH<4,3)	mmol/l	0,36	< 0,05
KS 4,3 (bei pH>4,3)	mmol/l	-	1,8
KB 8,2 (bei pH<8,2)	mmol/l	24	18,1
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			5,1
elektr. Leitfähigkeit	μS/cm		3680
Gesamttrockenrückstand	mg/l	4800	
Filtrattrockenrückstand	mg/l	4800	
Karbonathärte	mgCaO/l		49,07
Gesamthärte	mmol/l	21,58	17,5
ges. wirksame Acidität	mmol/l	21,00	18,5
TIC	mg/l	_	18
DOC	mg/l	2,41	2,6
Ammonium (N)	mg/l	1,09	1,9
Nitrat (N)	mg/l	<0,1	< 0,1
Nitrit (N)	mg/l	<0,05	٠ ٥, ١
Phosphat-ortho (P)	mg/l	<0,05	0,01
Phosphor gesamt (P)	mg/l	0,03	0,01
Sulfat	mg/l	2940	2340
Chlorid	mg/l	18	14,7
Fluorid	mg/l	<0,1	17,1
Sulfid	mg/l	<0,1	
Calcium (Ca)		592	533
Magnesium (Mg)	mg/l	166	102
Natrium (Na)	mg/l	2,82	14,6
` '	mg/l		
Kalium (K)	mg/l	8,05	7,2
Eisen (Fe), gesamt	mg/l	640 616	480
Eisen (Fe) gelöst	mg/l	605	440
Eisen (2+) Mangan (Mn) gesamt	mg/l	24	440
	mg/l	24	10
Mangan (Mn) gelöst	mg/l	24.2	18
Silizium (Si)	mg/l	24,3 1	
Aluminium (AI) Arsen (As)	mg/l	I	
` ,	mg/l		
Blei (Pb)	mg/l		
Cadmium (Cd)	mg/l		
Chrom (Cr) ges.	mg/l		
Kupfer (Cu)	mg/l		
Nickel (Ni)	mg/l		
Zink (Zn)	mg/l		
IONENBILANZ		00.0	FF ^
Summe Kationen	mmoleq/l	66,9	55,0
Summe Anionen	mmoleq/l	-61,7	50,9
Ionenbilanz-Fehler	%	4,0	3,9
CSB	mg/l	76	

LMBV VT3 Seite 47 von 50

Witznitz Messplatz Kippe Zeitreihen

Messstelle 70661

Markscheidernummer		70661	70661
Messstellenname		1308	1308
	L	K	1306 K
Grundwasserleiterzuordnur Probenahmedatum	ig I	17.01.14	13.08.15
		17.01.14	13.06.13
Vor-Ort-Parameter	00		40.7
Grundwassertemperatur	°C		12,7
pH-Wert	-	3,9	4,0
elektr. Leitfähigkeit	μS/cm	5900	8160
Sauerstoff	mg/l		2,7
Redoxspannung	mV		473
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	2,55
KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	137,0	57,2
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			3,4
elektr. Leitfähigkeit	μS/cm		9070
Gesamttrockenrückstand	mg/l	16000	
Filtrattrockenrückstand	mg/l	15000	
Karbonathärte	mgCaO/l		-
Gesamthärte	mmol/l	22,83	23,1
ges. wirksame Acidität	mmol/l	,	140
TIC	mg/l	-	27
DOC	mg/l	7,06	6,9
Ammonium (N)	mg/l	1,57	6,3
Nitrat (N)	mg/l	<0,1	< 0,1
Nitrit (N)	mg/l	<0,05	0,1
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	0,19	< 0,005
Sulfat	mg/l	8240	10400
Chlorid	mg/l	32,9	36,7
Fluorid	mg/l	4,86	00,7
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	453	438
Magnesium (Mg)	mg/l	280	296
Natrium (Na)	mg/l	7,45	25,8
Kalium (K)	mg/l	26,2	31,1
Eisen (Fe), gesamt	mg/l	3600	31,1
Eisen (Fe) gelöst		3500	4200
Eisen (2+)	mg/l	3500	3800
Mangan (Mn) gesamt	mg/l	71	3000
	mg/l	7.1	91
Mangan (Mn) gelöst	mg/l	E2 /	48
Silizium (Si)	mg/l	52,4	
Aluminium (Al)	mg/l	37	56
Arsen (As)	mg/l		0,016
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,028
Kupfer (Cu)	mg/l		< 0,005
Nickel (Ni)	mg/l		0,13
Zink (Zn)	mg/l		8,8
IONENBILANZ		4=0 :	0.10
Summe Kationen	mmoleq/l	176,4	216,1
Summe Anionen	mmoleq/l	-172,8	217,6
Ionenbilanz-Fehler	%	1,1	-0,3
CSB	mg/l	520	

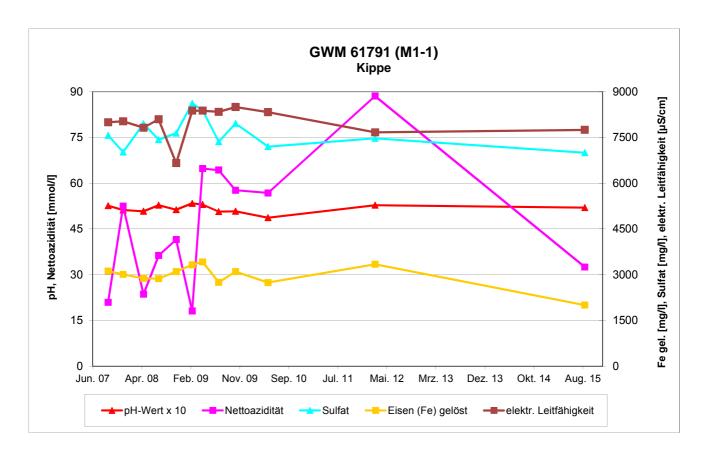
LMBV VT3 Seite 48 von 50

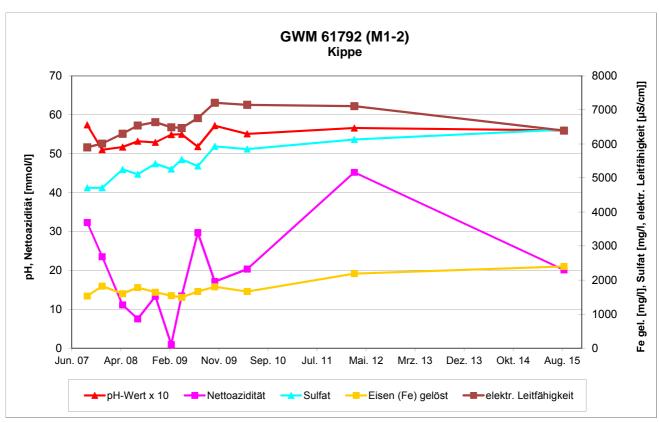
Witznitz Messplatz Kippe Zeitreihen

Messstelle 70671

Markscheidernummer		70671	70671
Messstellenname		1309	1309
Grundwasserleiterzuordnur	10	K	K
Probenahmedatum	ly	17.01.14	13.08.15
Vor-Ort-Parameter		17.01.14	13.00.13
	°C		10.0
Grundwassertemperatur	C	2.4	12,3
pH-Wert	- 0/	3,1	3,6
elektr. Leitfähigkeit	μS/cm	3035	3080
Sauerstoff	mg/l		3,6
Redoxspannung	mV	0.00	548
KB 4,3 (bei pH<4,3)	mmol/l	0,96	4,00
KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	25	21,9
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			3,1
elektr. Leitfähigkeit	μS/cm		3290
Gesamttrockenrückstand	mg/l	4600	
Filtrattrockenrückstand	mg/l	4400	
Karbonathärte	mgCaO/I		-
Gesamthärte	mmol/l	15,34	14,9
ges. wirksame Acidität	mmol/l		22,9
TIC	mg/l	-	12
DOC	mg/l	10,5	9,4
Ammonium (N)	mg/l	2,38	3,5
Nitrat (N)	mg/l	<0,1	< 0,1
Nitrit (N)	mg/l	<0,05	,
Phosphat-ortho (P)	mg/l	<0,05	0,007
Phosphor gesamt (P)	mg/l	<0,01	0,007
Sulfat	mg/l	3250	2180
Chlorid	mg/l	5,69	6,4
Fluorid	mg/l	1,85	-,
Sulfid	mg/l	<0,1	< 0,03
Calcium (Ca)	mg/l	539	504
Magnesium (Mg)	mg/l	46,1	56,2
Natrium (Na)	mg/l	4,29	7,3
Kalium (K)	mg/l	3,62	6,1
Eisen (Fe), gesamt	mg/l	330	•, .
Eisen (Fe) gelöst	mg/l	315	340
Eisen (2+)	mg/l	313	340
Mangan (Mn) gesamt	mg/l	10	0.10
Mangan (Mn) gelöst	mg/l	.0	11
Silizium (Si)	mg/l	69	48
Aluminium (Al)	mg/l	91	92
Arsen (As)	mg/l	01	0,019
Blei (Pb)	mg/l		< 0,019
Cadmium (Cd)	mg/l		0,003
Chrom (Cr) ges.			0,053
Kupfer (Cu)	mg/l mg/l		0,038
Nickel (Ni)			0,036
Zink (Zn)	mg/l		
IONENBILANZ	mg/l		1,1
	mmolog/I	E2 6	E / 1
Summe Kationen	mmoleq/l	53,6	54,1
Summe Anionen	mmoleq/l	-67,9	45,6
lonenbilanz-Fehler	%	-11,8	8,6
CSB	mg/l	69	

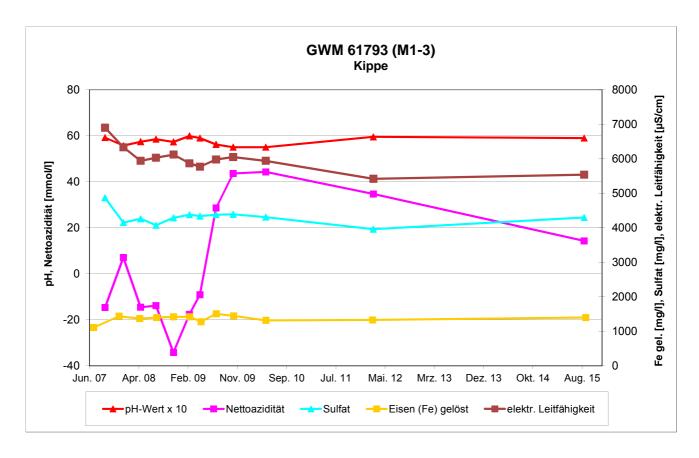
LMBV VT3 Seite 49 von 50

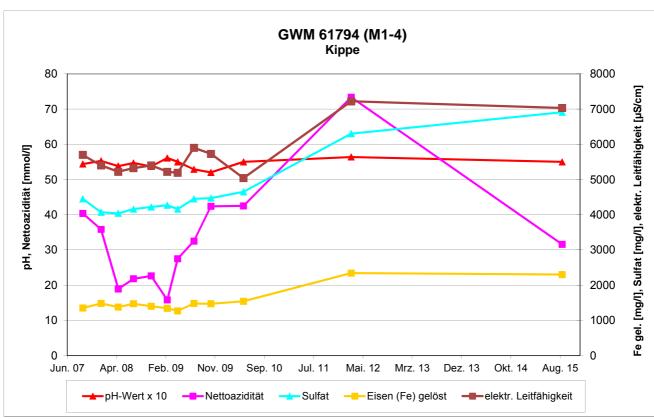

Witznitz Messplatz Kippe Zeitreihen


Messstelle 70681

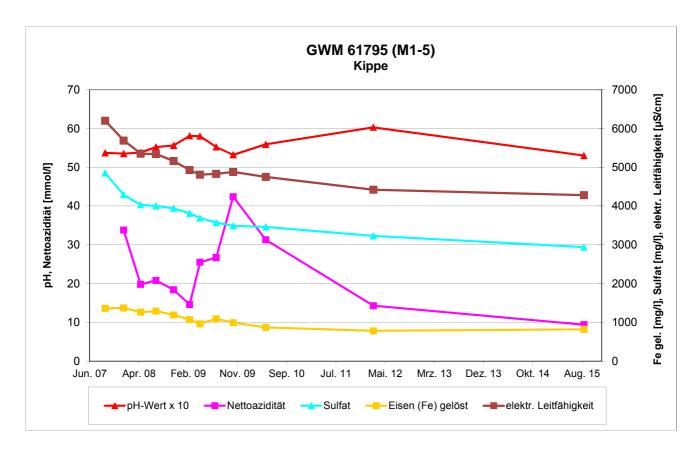
Markachaidarnummar	1	70601	70601
Markscheidernummer Messstellenname		70681 1310	70681 1310
Grundwasserleiterzuordnur	ng	K	K
Probenahmedatum		17.01.14	13.08.15
Vor-Ort-Parameter			
Grundwassertemperatur	°C		11,7
pH-Wert	-	4,0	4,0
elektr. Leitfähigkeit	μS/cm	3201	4510
Sauerstoff	mg/l		3,5
Redoxspannung	mV		526
KB 4,3 (bei pH<4,3)	mmol/l	<0,10	3,45
KS 4,3 (bei pH>4,3)	mmol/l	-	< 0,05
KB 8,2 (bei pH<8,2)	mmol/l	33,1	21,9
KS 8,2 (bei pH>8,2)	mmol/l	-	< 0,05
Laboranalytik			
pH-Wert			3,3
elektr. Leitfähigkeit	μS/cm		4920
Gesamttrockenrückstand	mg/l	4900	
Filtrattrockenrückstand	mg/l	4900	
Karbonathärte	mgCaO/l		-
Gesamthärte	mmol/l	17,53	17,9
ges. wirksame Acidität	mmol/l	,	47,5
TIC	mg/l	-	5,4
DOC	mg/l	4,33	4
Ammonium (N)	mg/l	2,53	3,8
Nitrat (N)	mg/l	<0,5	< 0,1
Nitrit (N)	mg/l	<0,05	٠ ٥, ١
Phosphat-ortho (P)	mg/l	<0,05	< 0,005
Phosphor gesamt (P)	mg/l	<0,03	< 0,005
Sulfat		3130	3960
Chlorid	mg/l		
Fluorid	mg/l	5,64	4,8
	mg/l	0,84	4 O O2
Sulfid	mg/l	<0,1 581	< 0,03
Calcium (Ca)	mg/l		569
Magnesium (Mg)	mg/l	73,8	89,8
Natrium (Na)	mg/l	4,71	5,2
Kalium (K)	mg/l	21,4	29
Eisen (Fe), gesamt	mg/l	980	4000
Eisen (Fe) gelöst	mg/l	783	1200
Eisen (2+)	mg/l	783	1200
Mangan (Mn) gesamt	mg/l	14	
Mangan (Mn) gelöst	mg/l		19
Silizium (Si)	mg/l	17,7	18
Aluminium (AI)	mg/l	18	36
Arsen (As)	mg/l		0,011
Blei (Pb)	mg/l		< 0,005
Cadmium (Cd)	mg/l		< 0,001
Chrom (Cr) ges.	mg/l		0,007
Kupfer (Cu)	mg/l		0,018
Nickel (Ni)	mg/l		3,2
Zink (Zn)	mg/l		6,4
IONENBILANZ			
Summe Kationen	mmoleq/l	65,5	85,5
Summe Anionen	mmoleq/l	-65,4	82,6
Ionenbilanz-Fehler	%	0,1	1,7
CSB	mg/l	110	
	_		

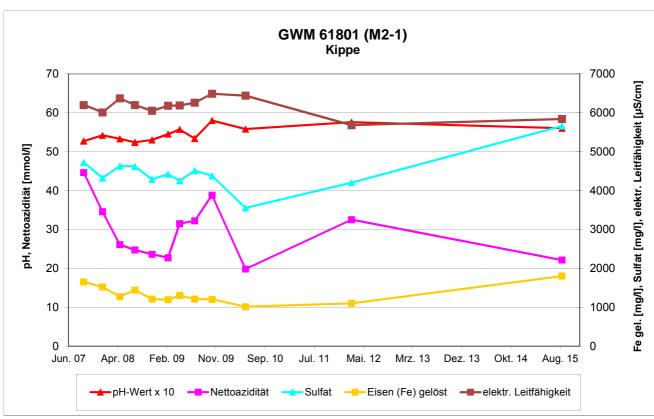
LMBV VT3 Seite 50 von 50


Ganglinien ausgewählter Parameter

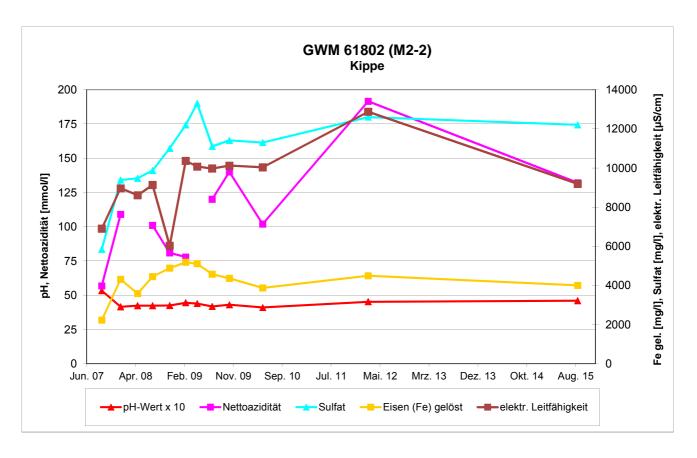


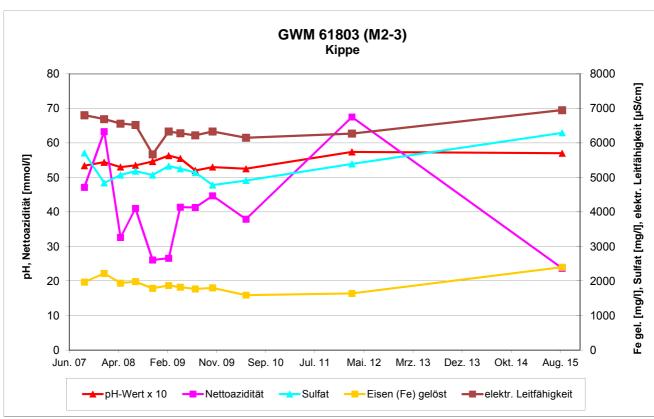
LMBV VT3 Seite 1 von 7


Ganglinien ausgewählter Parameter

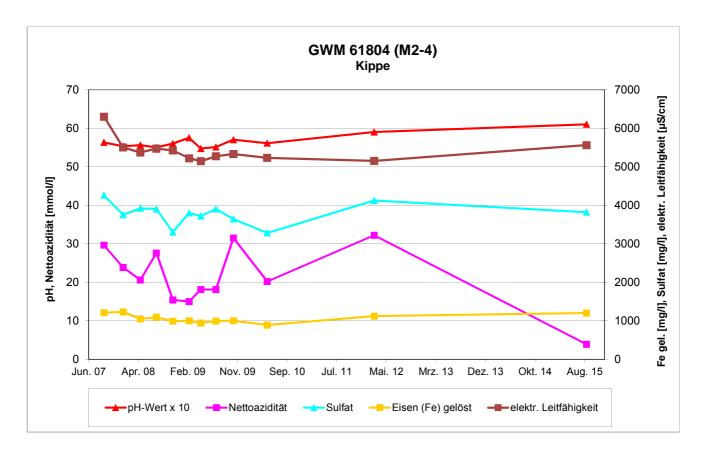


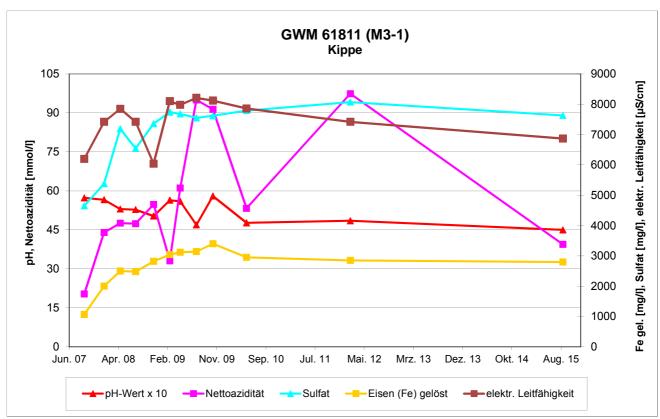
LMBV VT3 Seite 2 von 7


Ganglinien ausgewählter Parameter

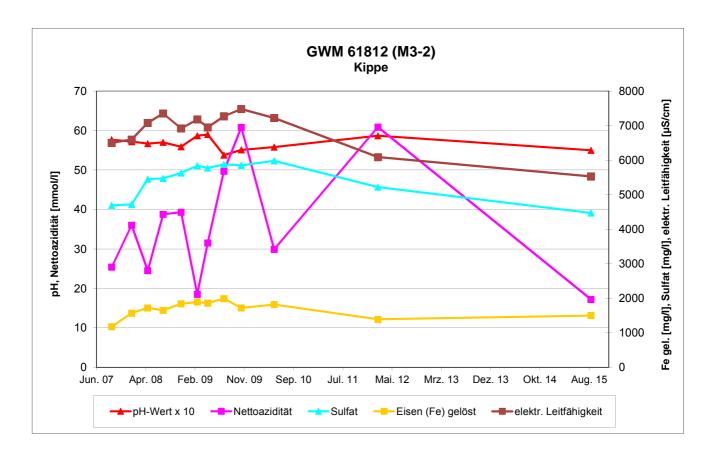


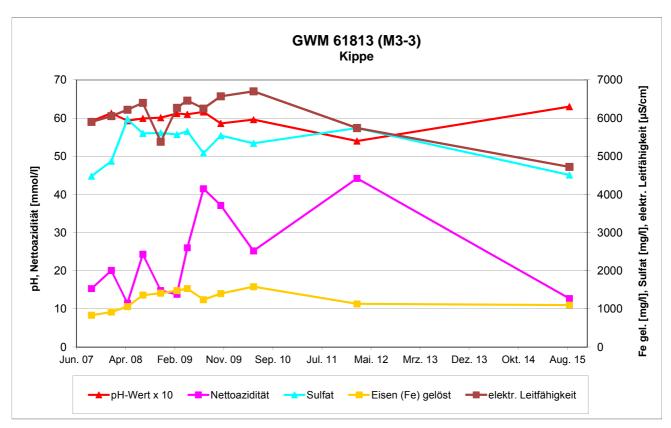
LMBV VT3 Seite 3 von 7


Ganglinien ausgewählter Parameter

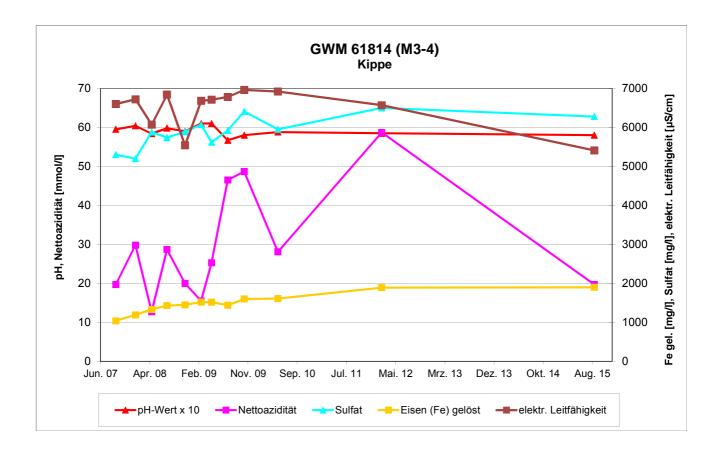


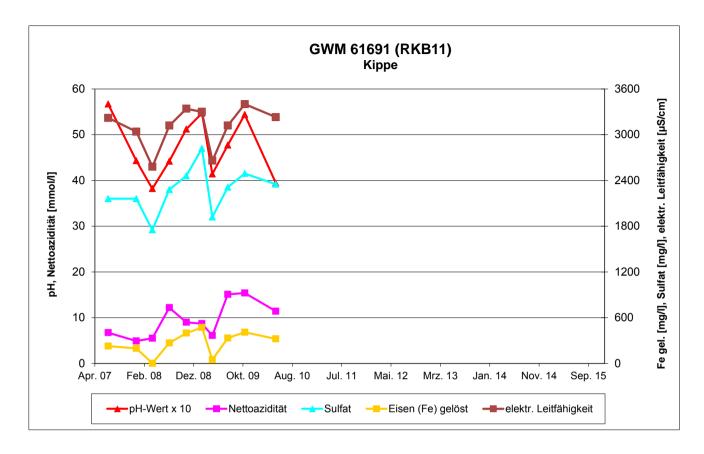
LMBV VT3 Seite 4 von 7

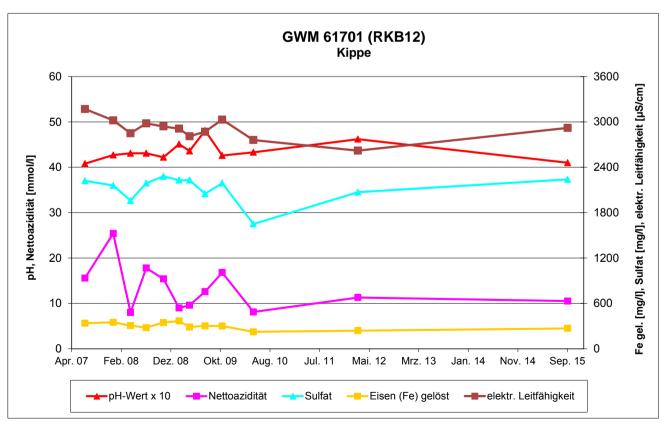

Ganglinien ausgewählter Parameter



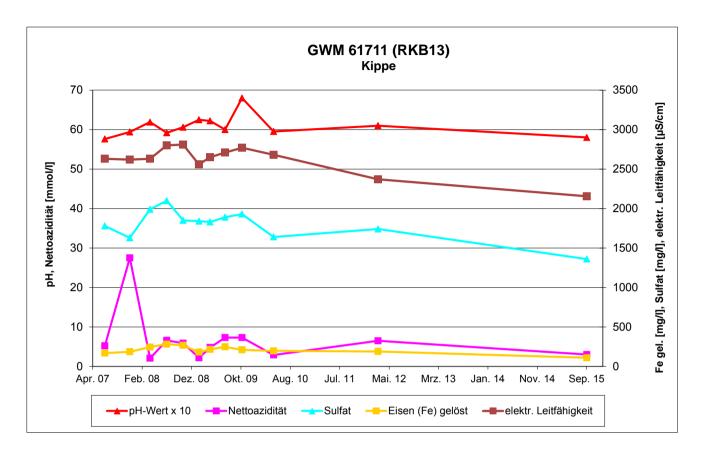
LMBV VT3 Seite 5 von 7

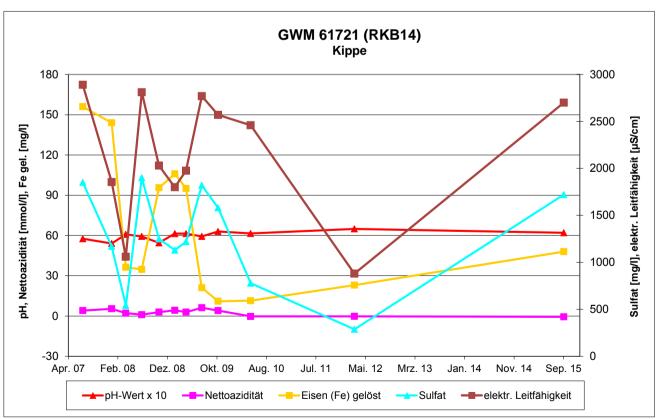

Ganglinien ausgewählter Parameter


LMBV VT3 Seite 6 von 7

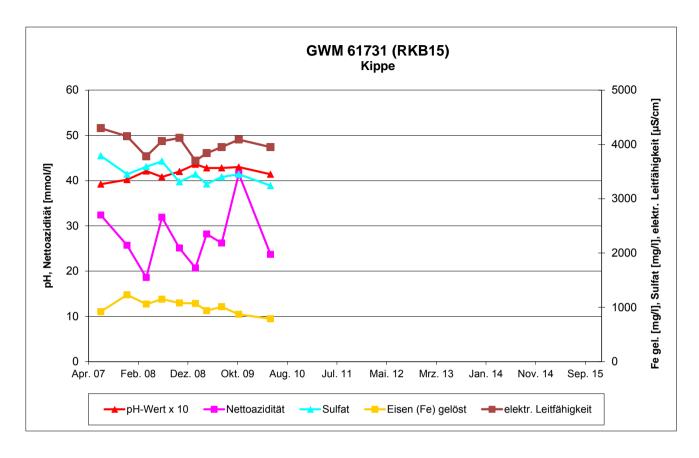

Ganglinien ausgewählter Parameter

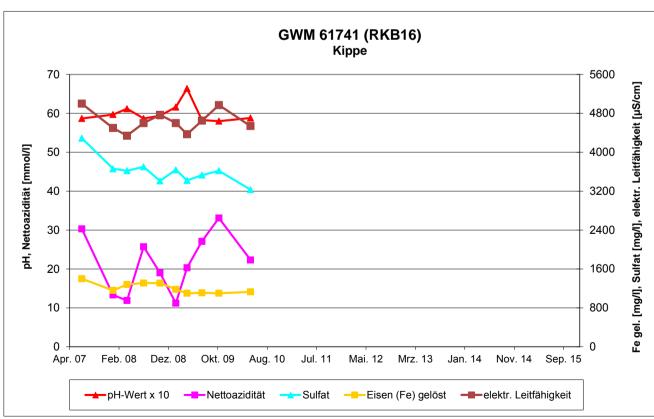
LMBV VT3 Seite 7 von 7


Ganglinien ausgewählter Parameter

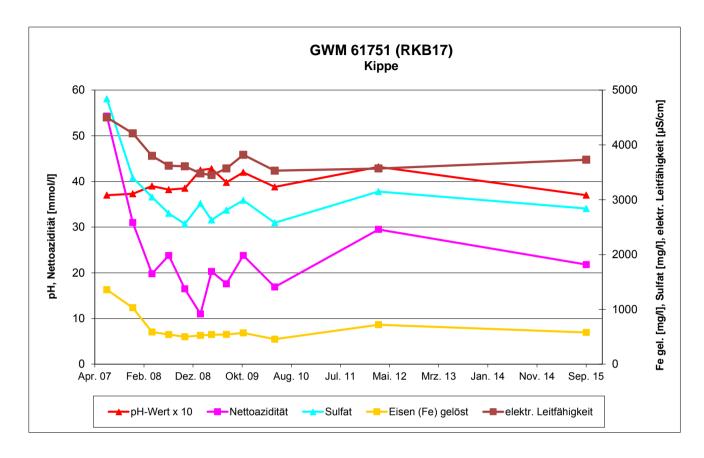


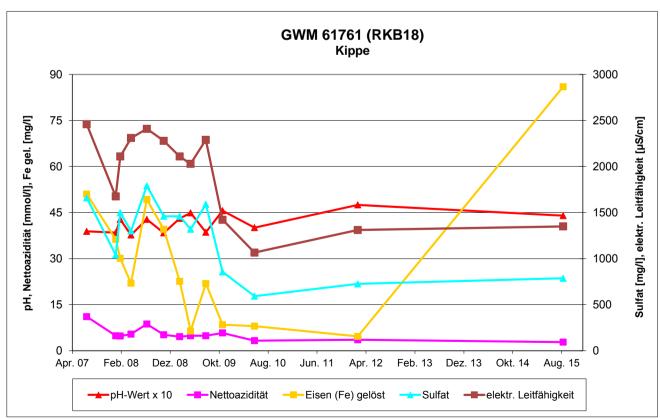
LMBV VT3 Seite 1 von 15


Ganglinien ausgewählter Parameter

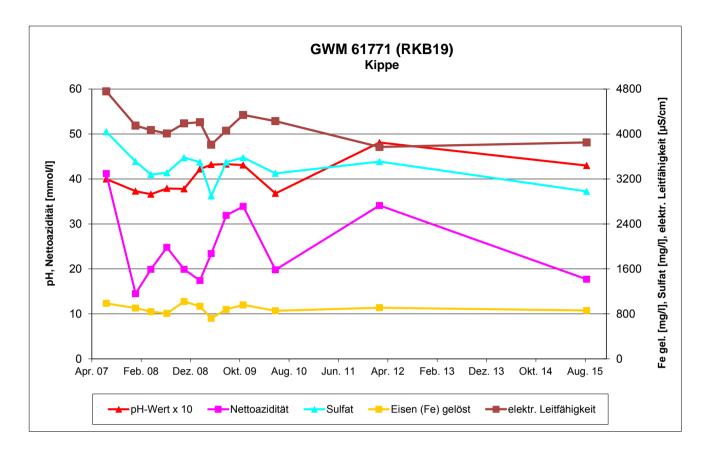


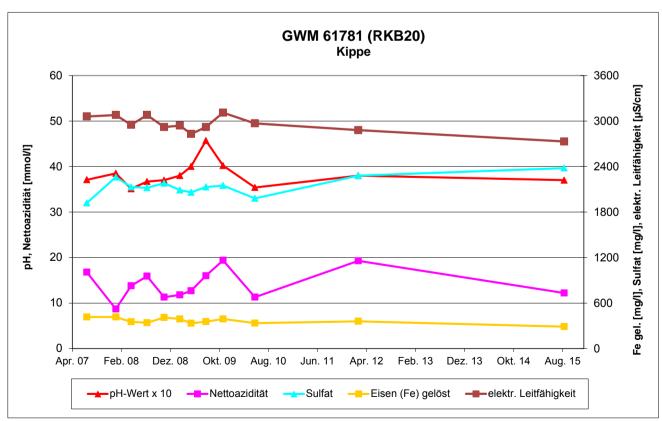
LMBV VT3 Seite 2 von 15


Ganglinien ausgewählter Parameter

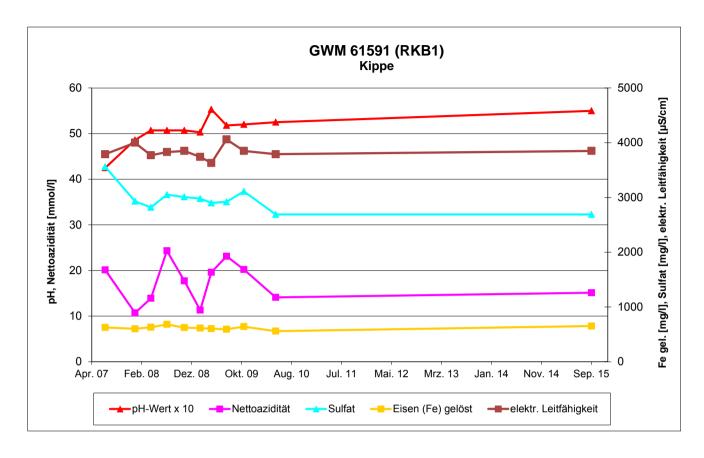


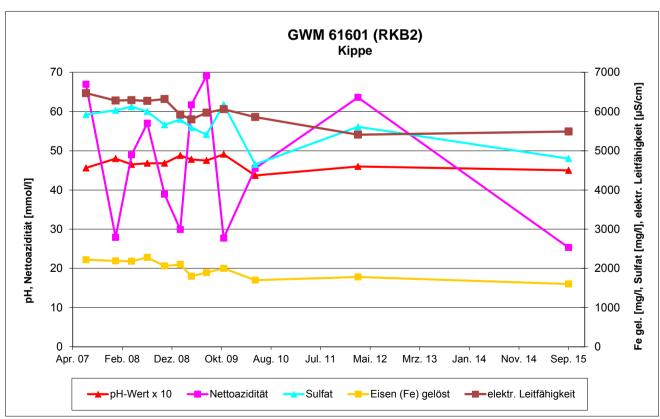
LMBV VT3 Seite 3 von 15


Ganglinien ausgewählter Parameter

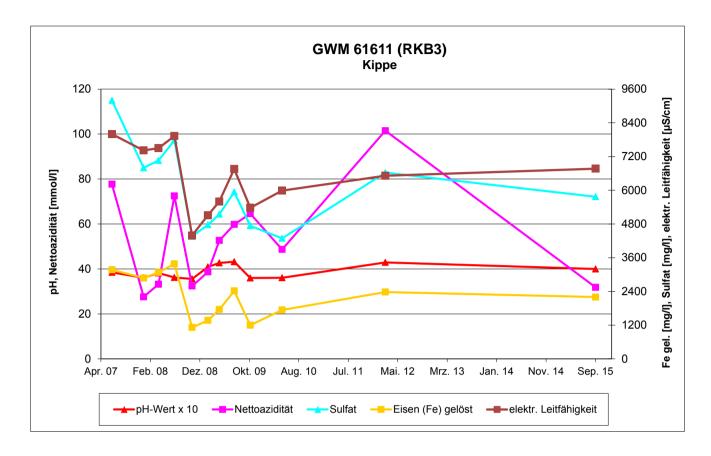


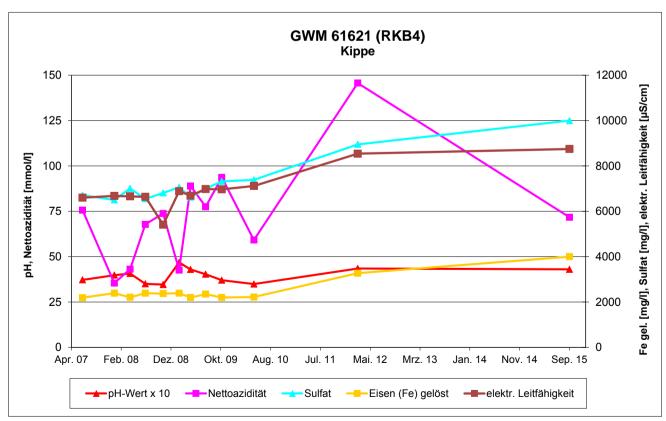
LMBV VT3 Seite 4 von 15


Ganglinien ausgewählter Parameter

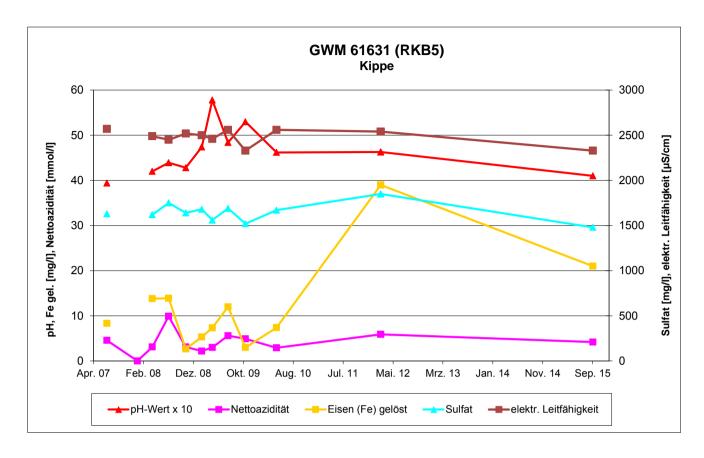


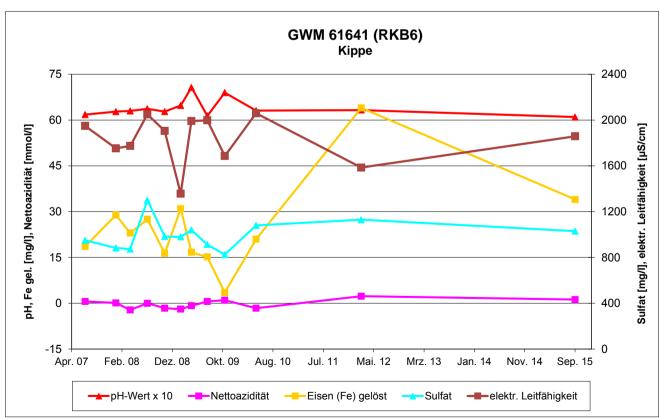
LMBV VT3 Seite 5 von 15


Ganglinien ausgewählter Parameter

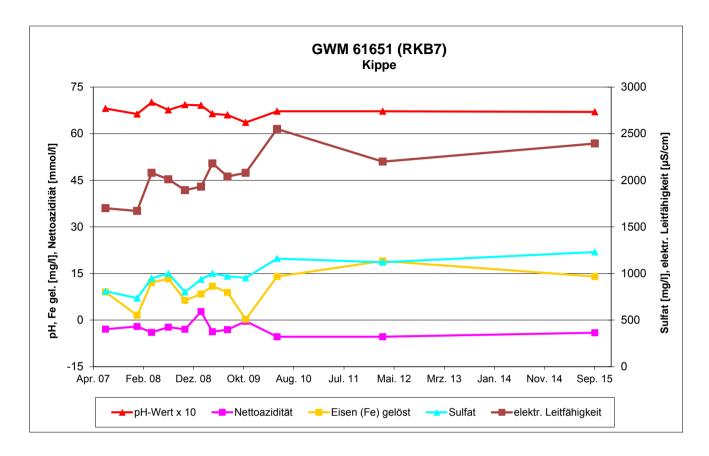


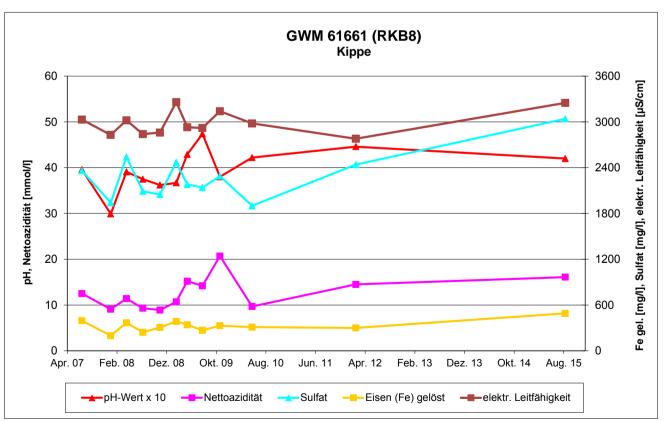
LMBV VT3 Seite 6 von 15


Ganglinien ausgewählter Parameter

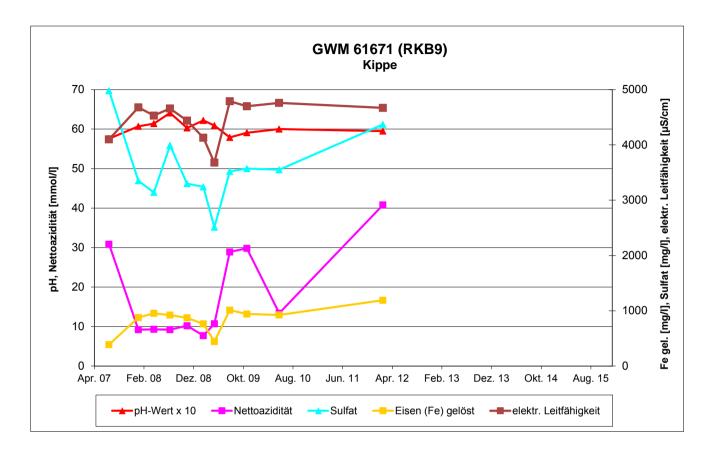


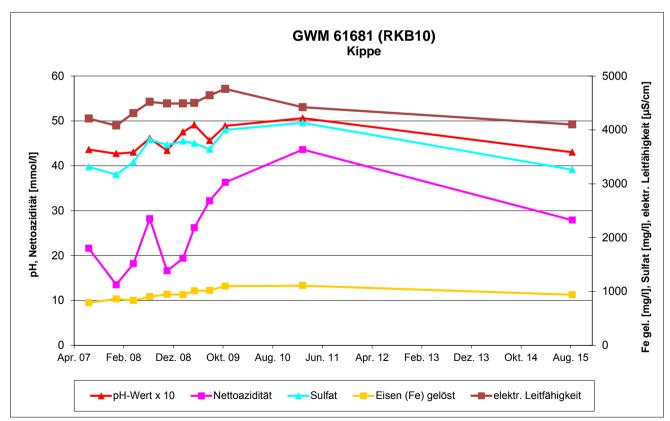
LMBV VT3 Seite 7 von 15


Ganglinien ausgewählter Parameter

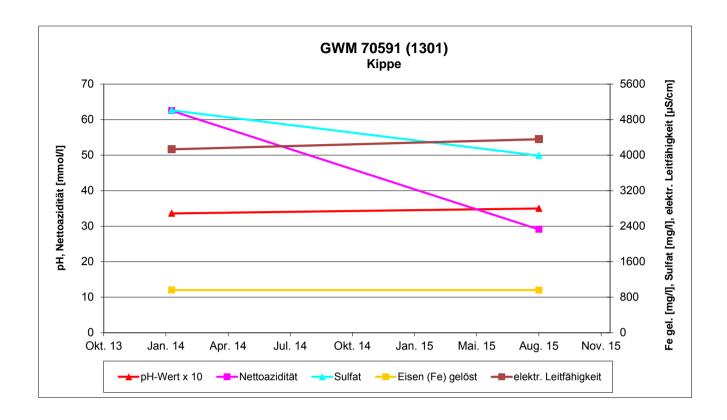


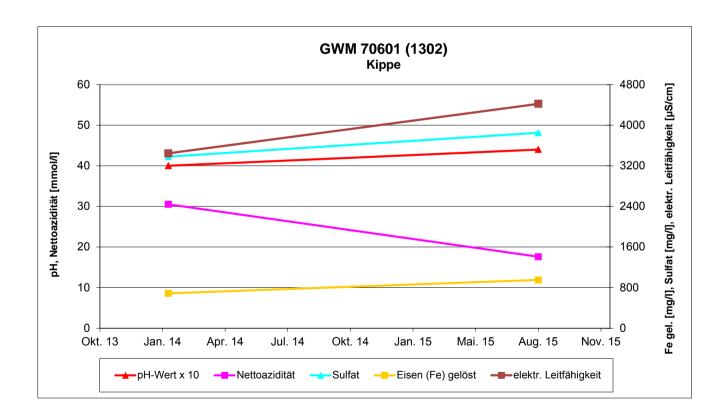
LMBV VT3 Seite 8 von 15


Ganglinien ausgewählter Parameter

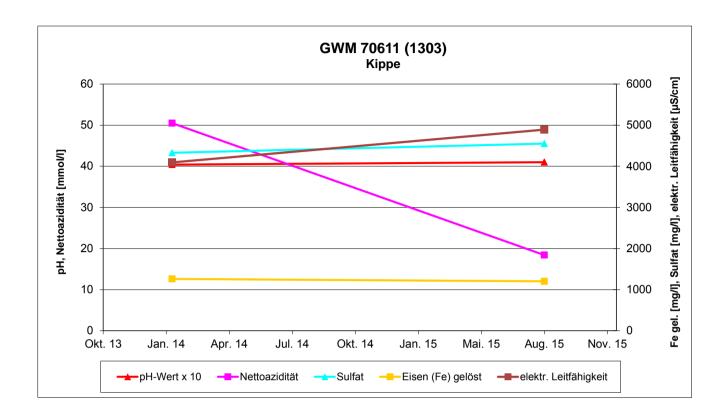


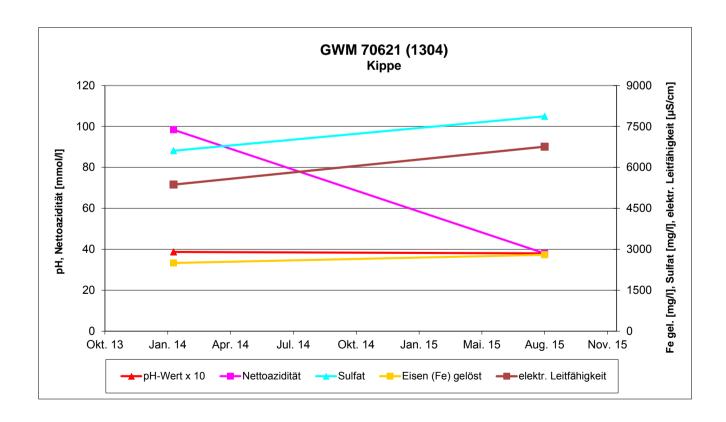
LMBV VT3 Seite 9 von 15


Ganglinien ausgewählter Parameter

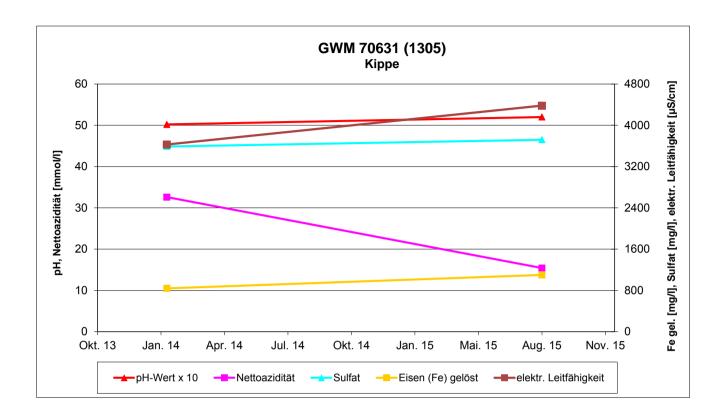


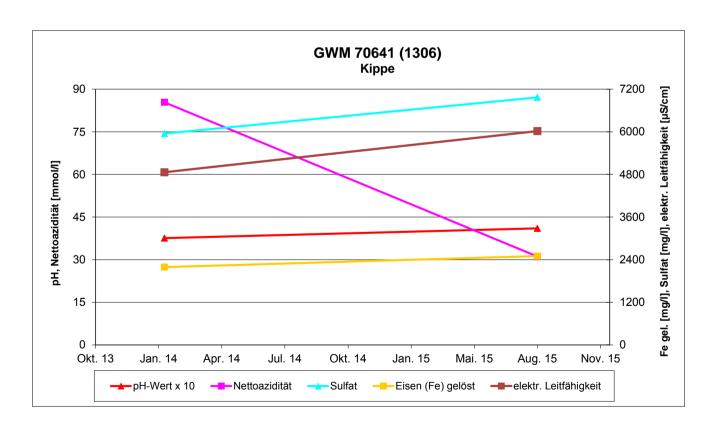
LMBV VT3 Seite 10 von 15


Ganglinien ausgewählter Parameter

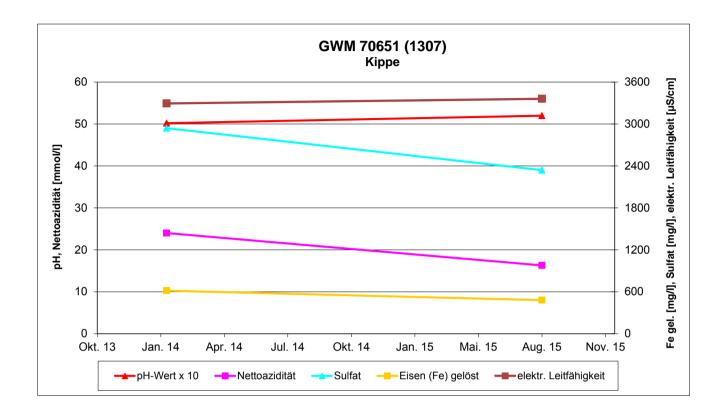


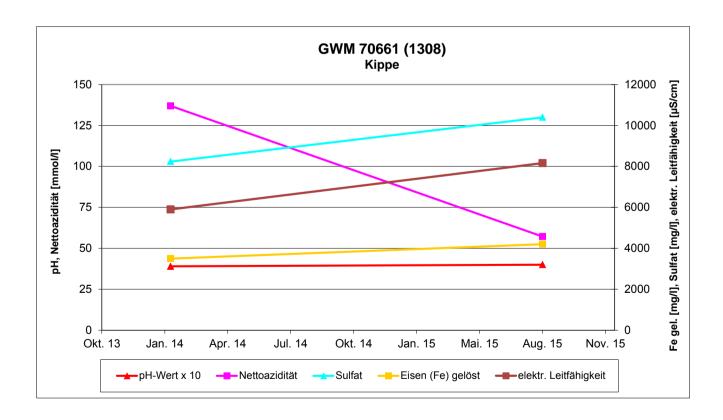
LMBV VT3 Seite 11 von 15


Ganglinien ausgewählter Parameter

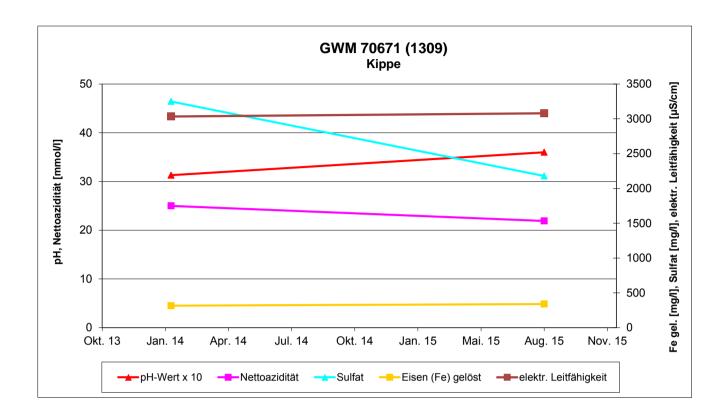


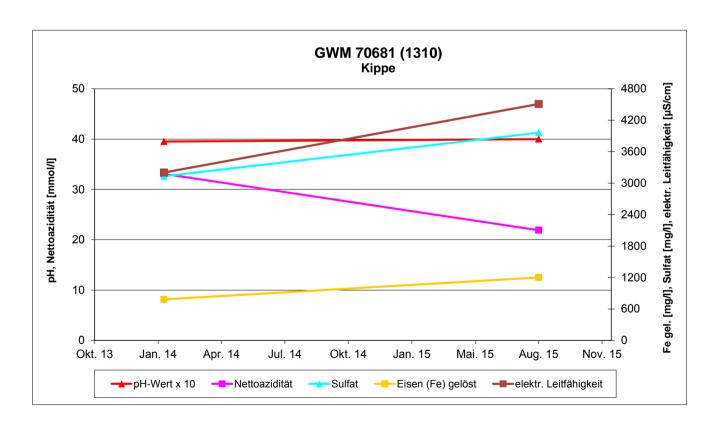
LMBV VT3 Seite 12 von 15


Ganglinien ausgewählter Parameter



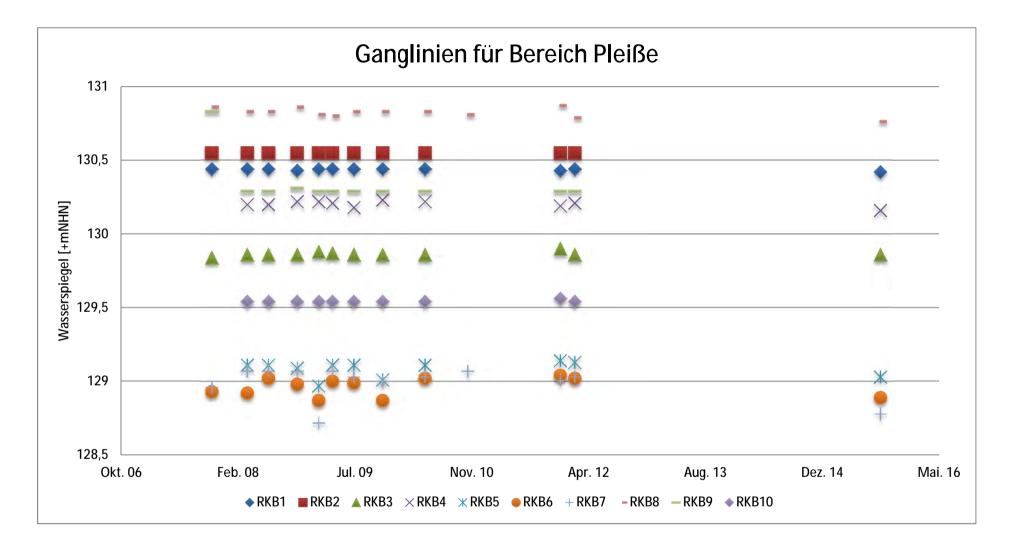
LMBV VT3 Seite 13 von 15

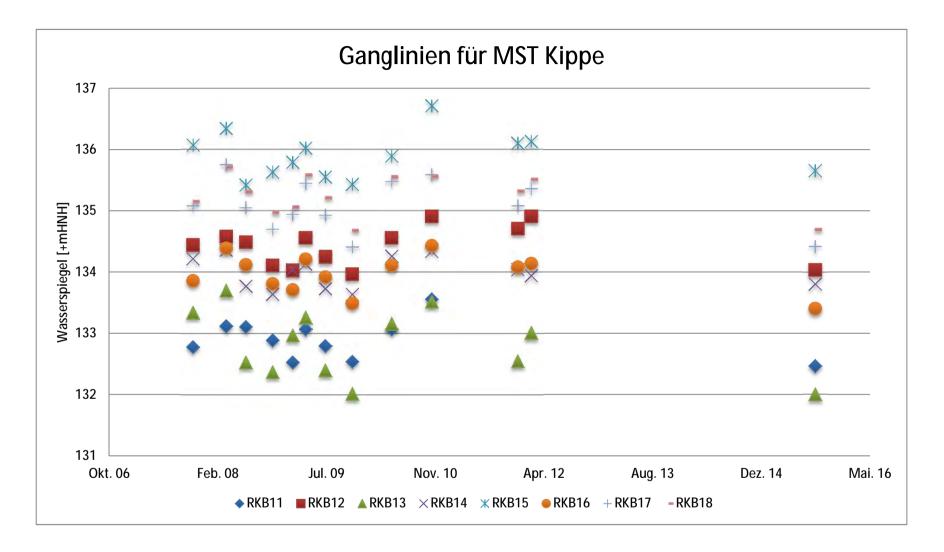

Ganglinien ausgewählter Parameter



LMBV VT3 Seite 14 von 15

Ganglinien ausgewählter Parameter




LMBV VT3 Seite 15 von 15

Montanhydrologisches Monitoring Monitoring Messplatz Kippe Witznitz Beprobung August-September 2015

Mark- scheidernr.	Messstellen name	ROK [+mNHN]	11/07	04/08	07/08	11/08	02/09	04/09	07/09	11/09	05/10	11/10	12/11	02/12	09/15
61591	RKB1	130,44	130,44	130,44	130,44	130,43	130,44	130,44	130,44	130,44	130,44	unter Wasser	130,43	130,44	130,42
61601	RKB2	130,55	130,55	130,55	130,55	130,55	130,55	130,55	130,55	130,55	130,55	unter Wasser	130,55	130,55	unter Wasser
61611	RKB3	129,86	129,84	129,86	129,86	129,86	129,88	129,87	129,86	129,86	129,86	unter Wasser	129,90	129,86	129,86
61621	RKB4	130,20	unter Wasser	130,2	130,2	130,22	130,22	130,21	130,18	130,23	130,22	unter Wasser	130,19	130,21	130,16
61631	RKB5	129,11	unter Wasser	129,11	129,11	129,09	128,97	129,11	129,11	129,01	129,11	unter Wasser	129,14	129,13	129,03
61641	RKB6	129,02	128,93	128,92	129,02	128,98	128,87	129,00	128,99	128,87	129,02	unter Wasser	129,04	129,02	128,89
61651	RKB7	129,07	128,96	129,07	129,07	129,07	128,72	129,07	129,03	129,00	129,03	129,07	129,01	129,03	128,78
61661	RKB8	130,83	130,86	130,83	130,83	130,86	130,81	130,80	130,83	130,83	130,83	130,81	130,87	130,79	130,76
61671	RKB9	130,29	130,83	130,29	130,29	130,31	130,29	130,29	130,29	130,29	130,29	unter Wasser	130,29	130,29	unter Wasser
61681	RKB10	129,54	unter Wasser	129,54	129,54	129,54	129,54	129,54	129,54	129,54	129,54	unter Wasser	129,56	129,54	unter Wasser
61691	RKB11	137,74	132,78	133,12	133,11	132,89	132,53	133,07	132,80	132,54	133,07	133,56			132,47
61701	RKB12	138,23	134,44	134,58	134,49	134,11	134,03	134,56	134,25	133,97	134,56	134,91	134,71	134,91	134,04
61711	RKB13	134,82	133,34	133,7	132,53	132,37	132,97	133,26	132,40	132,02	133,16	133,52	132,55	133,01	132,00
61721	RKB14	135,73	134,22	134,36	133,77	133,64	134,04	134,13	133,73	133,64	134,26	134,34	134,04	133,94	133,81
61751	RKB17	138,39	136,07	136,34	135,42	135,63	135,79	136,02	135,55	135,43	135,89	136,71	136,10	136,13	135,66
61761	RKB18	138,51	133,86	134,39	134,12	133,81	133,71	134,21	133,92	133,49	134,11	134,43	134,08	134,14	133,40
61771	RKB19	137,64	135,08	135,75	135,05	134,7	134,94	135,45	134,93	134,41	135,48	135,59	135,08	135,36	134,42
61781	RKB20	138,37	135,15	135,71	135,31	134,97	135,06	135,58	135,21	134,68	135,55	135,56	135,32	135,51	134,69

VT 3 1 von 3

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
onten	flithert unfiltriertko 1000 ml Glas 1000 ml Braunglas 1000 ml Braunglas 1000 ml Glas 1000 ml Glas 1000 ml Glas 100 ml Glasschiff für ThC/DoC 100 ml Glasschiff für ThC/DoC flithert 1100 ml Glasschiff flithert	S00 ml PE	X X S X S X X X X X X X X X X X X X X X	150732645	Füllgrad Verschluss in Ordnung	pH=4,38
vtwg	fitnert unfiltriertko	500 ml PE (Marmor) (Marmor) für BSB5 für BSB5 für BSB5 250 ml PE für Phosphat 250 ml PE für Phosphat 250 ml PE für Milltriert 1 x 250 ml PE für Milltriert 1 x 250 ml PE für Anionen unfiltriert 500 ml Glas Acidität 250 ml Glasschliff 250 ml Glasschliff	KS KS Sulfid	150732646	Füllgrad Verschluss in Ordnung	pH= 433

Elseil ger., Elseil II., Mailgail ger.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

verantw. Labor	he
verantw. BUC	12.

Übernahme/-Übergabeprotokoll Mont hydrologisches Monitoring Wes achsen/Thüringen 2015 Datum der Probenahme: ✓3.8 ✓ऽ Projekt: Monitoring Werben 15-002-40 Datum der Probenahme: ✓3.8 ✓ऽ

Datum der Probenübergabe: 13.8.10

Messacione	riascileiisaiz		Analytik	Labol NI.	Elligaligskolluolle	Sollstiges
70591	filtriert unfiltriertko Kir PAK stab. 1000 ml Glas für RG-KNV 500 ml Braunglas für GC-KNV 500 ml Braunglas für für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC für Filtriert Kir CSB stab. 100 ml Glasschliff für TIC/DOC für Filtriert Kir CSB stab. 100 ml Glasschliff für TIC/DOC für Filtriert Kir	500 ml PE 250 ml PE für Fe II stab. (Marmor) filtriert 250 ml PE für Bhosphat filtriert 250 ml PE für Phosphat filtriert 250 ml PE für Phosphat filtriert 250 ml PE für Anionen unfiltriert 250 ml PE für Anionen unfiltriert 250 ml PE für Hg stab. SM stab. filtriert filtriert 250 ml PE für Aox stab. Cyanide stab	P P P P P P P P P P P P P P P P P P P	150732647	Füllgrad Verschluss in Ordnung	pH= 3,53
61681	flithert unfiltrientko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-RW 500 ml Braunglas fültrient	Mamor Mamo	P 1 P 1 Sulfid X S = X X X X X X X X X X X X X X X X X	150732648	Füllgrad Verschluss in Ordnung	H=4,22

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert** < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Anzahl	
Übergabe Leergut an BUC	Menge der leeren Flaschensätze:

18
r

Übernahme/-Übergabeprotokoll Mont hydrologisches Monitoring Wes achsen/Thüringen 2015 المجابية المراكة المرا

Datum der Probenahme: 13.8.15

Datum der Probenübergabe: 13.8 15

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
Vogot	1000 ml Glas flithriert unflitriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KNV 500 ml Braunglas für GC-KNV 500 ml Braunglas für Phenol stab. 2500 ml Glas für Phenol stab. 100 ml Glasschliff für TIC/DOC flitriert Unflitriert	500 ml PE 250 ml PE für Fe il stab. (Marmor) unfiltriert S00 ml PE für BSB5 250 ml PE für Phosphat für für BSB5 250 ml PE für Phosphat für für stab. filtriert Unfiltriert Unfiltriert	P 1 KS	150732649	Füllgrad Verschluss in Ordnung	pH= 4,40
70611	filtriert unfiltriertko filtriert 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas filtriert 2 x unfiltriert 500 ml Glas für Phenol stab. 250 ml Glasschiff für TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert	500 ml PE S50 ml PE für Fe II stab. (iltriert 500 ml PE für BSB5 filtriert 250 ml PE für Brosphat filtriert 500 ml PE für Milltriert 500 ml Glas	P P 1 P P 1 P P 1 P P 1 P P 1 P P 1 P P 1 P	150732650	Füllgrad Verschluss in Ordnung	501/2 = Hd

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Po Po
14,

Datum der Probenahme: 13.8,15

Wifewitz Projekt: Monitoring Werben 15-002-40

Datum der Probenübergabe: 13 8 15

Sonstiges	ptt= 3,82	pH-5,79
Eingangskontrolle	Füllgrad Verschluss in Ordnung	Füllgrad Verschluss in Ordnung
Labor Nr.	150732651	1507Nd 150732652
Analytik	P 1 KS KS XS	X XS Aci. X Sulfid X XS = XS X XS = XS
2	500 ml PE	S 500 ml PE (Mamor)
Flaschensatz	1000 ml Glas flittert unfiltriertko	1000 ml Glas filtriert unfiltriertko
Messstellen	1780t	70631

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung:

verantw. Labor	12
verantw. BUC	14

Übernahme/-Übergabeprotokoll Mont hydrologisches Monitoring Wes achsen/Thüringen 2015 Datum der Probenahme: عربي 8, عرب Projekt: Monitoring Werben 15-002-40 Datum der Probenahme: مربي 8, عرب المربية المر

Datum der Probenahme: 13.8.15

Datum der Probenübergabe: 13.8.15

	90	7
Sonstiges	90'5 =Hd	S-Hd
Eingangskontrolle	Füllgrad Verschluss in Ordnung	Füllgrad Verschluss in Ordnung
Labor Nr.	150732653	Soom PE (Marmor) Rithert Poly Islab. P 1 XS Full grad Verschluss in Ordnung Figrad
Analytik	P P P P P P P P P P P P P P P P P P P	P 1 RS KS KS Aci. Sulfid
	Soo ml PE 250 ml PE für Fe II stab. (Marmor) unflitriert Soo ml PE für BSB5 250 ml PE für Phosphat fürliriert Sulfid stab. filtriert Sulfid stab. filtriert Sulfid stab. filtriert Sulfid stab. filtriert Soo ml PE für Anionen unflitriert Soo ml PE für Hig stab. Six stab. filtriert Soo ml Glass hillriert Soo ml Glass Cyanide stab. Für für AOX stab. filtriert Soo ml Glass Cyanide stab. Für für AOX stab. Soo ml Glasschilift für AOX s	500 ml PE 250 ml PE für Fe II stab. (Marmor) unfiltriert SO ml PE für BSB5 filtriert Sulfid stab. filtriert unfiltriert 250 ml PE für Anionen stab. Soo ml Glas Cyanide stab. Soo ml Glas Acidität 250 ml PE für Anionen unfiltriert 250 ml Glasschliff für AOX stab. 250 ml Glasschliff
Flaschensatz	1000 ml Glas flitriert unfiltriertko	1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas für GC-KW 500 ml Glas für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschliff für 11C/DOC filtriert 11C/DO
Messstellen	V n90t	V590C

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff

P 2 Versauerung: Sulfid

Anzahl	sätze:
Übergabe Leergut an BUC	Menge der leeren Flaschensäl

verantw. Labor	Jan San San San San San San San San San S
verantw. BUC	14

Datum der Probenahme: 13 8 15

Projekt: Monitoring Werben 15-002-40

Datum der Probenübergabe: 138.15

	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
70671	1000 ml Glas flitriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas für GC-KW 500 ml Glas für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC flitriert	S00 ml PE 250 ml PE für Fe II stab. filtriert 250 ml PE für Phosphat für BBS 11 milltriert 250 ml PE für Phosphat für BBS 11 milltriert 250 ml PE für Anionen unfiltriert 250 ml PE für Anionen unfiltriert 250 ml PE für Anionen unfiltriert 250 ml PE für Restab. 100 ml PE für Restab. 11 milltriert 250 ml PE für Anionen unfiltriert 250 ml PE für Acidität 250 ml Glasschliff 250	R S Sulfid X S Sulfid X S S Sulfid X S S S S S S S S S S S S S S S S S S	1507Nd 150732655	Füllgrad Verschluss in Ordnung	pH-3,58
1990t	1000 ml Glas flitriert unflitriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas flitriert 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert	500 ml PE (Marmor) (M	P 1 P 1 P 2 KS KS Sulfid Ks	150732656	Füllgrad Verschluss in Ordnung	10° + +d

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert** < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Anzahl	
Übergabe Leergut an BUC	Menge der leeren Flaschensätze:

	1
verantw. Labor	34
verantw. BUC	12

Datum der Probenahme: 13.8, 15

Witevitz Projekt: Monitoring Werben 15-002-40

Datum der Probenübergabe: 13 8 15

Messstellen	Flaschensatz	Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
70681	1000 ml Glas filtriert unfiltriertko Marmor unfiltriertko Marmor Marmor Marmor Unfiltriert Marmor Soo ml Braunglas Soo ml PE für BNB5 Soo ml PE für Phosphat für BNB5 Soo ml PE für Intriert Miltriert Miltr	P 1 KS	150732657	Füllgrad Verschluss in Ordnung	00'5 = Hd
64661	1000 ml Glas 500 ml PE 250 ml PE für Fe II stab. P 1 Euilgrad filtriert	P 1 KS KS Sulfid \overline{\text{KS}} \te	150732658	Füllgrad Verschluss in Ordnung	ph- 4,16

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Labor	
verantw. I	12
verantw. BUC	19

Datum der Probenahme: 13.8 15

Projekt: Monitoring Werben 15-002-40

Datum der Probenübergabe: 138

Sonstiges Eingangskontrolle Füllgrad Verschluss Verschluss in Ordnung in Ordnung Füllgrad Labor Nr. P 1 P 2 KS KS Aci. P 2 KS 2 VIIII Analytik Kb = Ks = Kb = XS filtriert S250 ml PE für Phosphat filtriert S10 milltriert S10 mil 250 ml PE für Phosphat filtriert 250 ml PE für Fe II stab. filtriert X unfiltriert 250 ml PE für Fe II stab. filtriert aunfiltriert 100 ml PE für Hg stab. filtriert unfiltriert 100 ml PE für Hg stab. filtriert unfiltriert 250 ml PE für Anionen und NH4 250 ml PE für Anionen und NH4 250 ml Glasschliff für AOX stab. 250 ml Glasschliff für AOX stab. 2 x Headspace 2 x Headspace 250 ml PE für Cyanide stab. 250 ml PE für Cyanide stab. $\boxtimes \Box$ $\boxtimes \Box$ 1 x 250 ml PE für SM stab. filtriert Mriltriert $\boxtimes \Box$ X \boxtimes 1 x 250 ml PE fü SM stab. filtriert unfiltriert 250 ml PE für Sulfid stab. filtriert unfiltriert 250 ml PE für Sulfid stab. filtriert unfiltriert 500 ml Glas Acidität 500 ml Glas Acidität 250 ml PE filtriert unfiltriert 250 ml PE filtriert unfiltriert 500 ml PE für BSB5 500 ml PE für BSB5 500 ml PE (Marmor) 500 ml Braunglas
filtriert 500 ml Braunglas
filtriert 100 ml Glasschliff für TIC/DOC filtriert Cunfiltriert 100 ml Glasschliff für TIC/DOC filtriert M Flaschensatz $\boxtimes \Box$ $\boxtimes \Box$ 500 ml Glas für Phenol stab. 500 ml Glas für Phenol stab. 250 ml PE für CSB stab. 1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 250 ml PE für CSB stab. 1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW Messstellen

P 1: Analytik:

pH, Lf, TIC, DOC, NH4-N, Nitrat-N, o-Phosphat, Gesamtphosphor, Kalium, Na, Ca, Mg, Karbonathärte, Gesamthärte, Cl, Sulfat

Eisen gel., Eisen II, Mangan gel.

As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung:

w. Labor	
verantw	(18)
verantw. BUC	2

Datum der Probenahme: 26, \$ 15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 7 L 2 1

Messstellen	Flaschensatz	Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
6 1391	1000 ml Glas	P 1 T S S S S S S S S S S S S S S S S S S	150772049	Füllgrad Verschluss in Ordnung ☑	年2573
CHD	1000 ml Glas 500 ml PE ∑50 ml PE für Fe II stab. flitriert 500 ml PE Z50 ml PE für Fe II stab. 1000 ml Glas 250 ml PE für Phosphat Litriert Illtriert 1000 ml Glas 250 ml PE für Phosphat Litriert Illtriert 1000 ml Glas 250 ml PE für Anionen Litriert Z50 ml PE für Anionen 500 ml Glas 1 x 250 ml PE für Anionen Litriert Z50 ml PE für Hg stab. 500 ml Glas 1 x 250 ml PE für Hg stab. filtriert Z50 ml PE für Hg stab. 500 ml Glas 500 ml Glas Cyanide stab. Z50 ml PE für Hg stab. 1 x Phenol stab. 300 ml Glas Cyanide stab. Z50 ml PE für Hg stab. 1 x Phenol stab. 250 ml Glas Cyanide stab. Z50 ml PE für Hg stab. 1 x Phenol stab. 250 ml Glas Z50 ml PE für Hg stab. Z50 ml PE für Hg stab. 1 x Phenol stab. 250 ml PE für Hg stab. Z50 ml Glasschliff für Hg für Hg stab. Z50 ml Glasschliff für Hg für Hg stab. 1 x Hg x x x x x x x x x x x x x x x x x	P 1 P 2 KS KS Aci. Sulfid \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	150772050	Füllgrad Verschluss in Ordnung	8-218
الماسية	TI 15 TI DOC NILLA IN Nitrata I December Kelium Ne Ce Ma Kerbanathärte Gesamthärte Cl Sulfat	V rodacodata	III NI C Ma Karbanathara Gasamth	Parts Cl Sulfat	

pri, Li, TiC, DCC, Nnt4-N, Nitrat-N, O-Fritospirat, Gesarinprospirot, Nation, Na, Ca, Mg, Na, Eisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

verantw. BUC	verantw. Labor	The
	verantw. BUC	74

Datum der Probenahme: 26.8. 15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 26.8.15

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
61793	1000 ml Glas filtriert unfiltriertko	500 ml PE S 250 ml PE für Fe II stab. (Marmor) filtriert S 500 ml PE für BSB5 filtriert S 500 ml PE für Phosphat filtriert S 500 ml PE für Phosphat filtriert S 500 ml PE für Anionen unfiltriert S 500 ml PE für Anionen unfiltriert S 500 ml Glass b. S 500 ml Glass b. S 500 ml Glass b. G	P 1 RS RS Sulfid XS = KS KS KS KS KS KS KS KS = KS KS KS = KS	150772051	Füllgrad Verschluss in Ordnung	78'S - Hd
hetva	filtriert unfiltriertko Kitrent unfiltriertko Kitrent 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas fültriert Kitrent Kit	500 ml PE 500 ml PE fürrent 500 ml PE 500 ml PE für Sulfid stab. filtriert 1 x 250 ml PE für Miltriert 1 x 250 ml PE für Miltriert 1 x 250 ml PE für Miltriert Und NH4 1 x 250 ml PE für Miltriert Unflitriert Unflitriert S50 ml Glas Acidität 250 ml Glas Cyanide stab. S50 ml Glas Acidität 250 ml PE für Miltriert S50 ml Glas Cyanide stab. S50 ml Glasschliff Ex50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff S50 ml PE Miltriert S50 ml PE Miltriert S50 ml Glasschliff Miltriert S50 ml PE Miltriert Miltriert S50 ml PE Miltriert S50 ml PE Miltriert S50 ml PE Miltriert S50 ml PE Miltriert S50 ml PE Miltriert Miltriert Miltriert S50 ml PE Miltriert Miltriert Miltriert S50 ml PE Miltriert Miltri	P 1 P 1 P 2 KS KS KS Sulfid \(\begin{array}{c c} \ KS & = & & & & & & & & & & & & & & & & &	150772052	Füllgrad Verschluss in Ordnung	pH= 5/54

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

an BUC Anzahl	n Flaschensätze:
Übergabe Leergut	Menge der leeren

verantw. BUC	verantw. Labor
3	S

Datum der Probenahme: 26.8, 15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 26.8. 1

	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges	
70809	1000 ml Glas flitriert unflitriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas für GC-KW 500 ml Glas für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC flitriert	S00 ml PE S50 ml PE für Fe II stab. (Marmor) filtriert S00 ml PE für BSB5 250 ml PE für Phosphat für BSB5 150 ml PE für Phosphat filtriert Sulfid stab. (Iltriert 1 x 250 ml PE für Mitthiert 1 x 250 ml Glass midliriert 250 ml PE für Acidität 250 ml Glasschliff für Acidität 250 ml G	R S S Sulfid X X X X X X X X X X X X X X X X X X X	THOMASE 1507 72053	Füllgrad Verschluss in Ordnung	82° + = 8	
61803	filtriert unfiltriertko	Soo ml PE Seo ml PE für Fe II stab. (Marmor) Ittrient Soo ml PE für BSB5 Ittrient Sol ml PE für Phosphat fültrient Sol ml PE für Militrient Soo ml PE für Militrient Soo ml Glass	P 1 P 2 KS KS KS Sulfid \(\begin{array}{c c} \ KS & = & & & & & & & & & & & & & & & & &	150772054	Füllgrad Verschluss in Ordnung	pH=5,68	

pri, El, Tro, Doc, M. Pri, Mangan gel.

Eisen gel., Eisen II, Mangan gel.

As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

14.	verantw. BUC	verantw. Labor
	7	TUT

okoll Montanhydrologisches Monitoring Westsachsen/Thüringen 2015

	0
tokol	6
bepro	S. S. L.
erga	5
Ubernahme/-Ubergabeprotokoll N	Datum der Probenahme:
ğ	Datu

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 26,8 15

	80	
Sonstiges	8 S # S	
Eingangskontrolle	Füllgrad Verschluss in Ordnung	Füllgrad Verschluss in Ordnung
Labor Nr.	150772055	iim Na Ca Ma Karbonathärta Gasamt
Analytik	R P 1 R S Sulfid X Sulfid X S =	P 1
Flaschensatz	1000 ml Glas 500 ml PE ≥50 ml PE für Fe II stab. fültriert 11triert 11triert 1000 ml Glas 250 ml PE für 1250 ml PE für Phosphat für Phosphat für Pkt Phosphat für Pkt Pkt Phosphat für GC-KW 1000 ml Glas 1 x 250 ml PE für 250 ml PE für Anionen fültriert 500 ml Braunglas 1 x 250 ml PE für Milltriert 250 ml PE für Anionen fültriert 500 ml Braunglas 3 M stab. 100 ml PE für Hg stab. fültriert 100 ml PE für Pkt	1000 mi Glas 500 mi PE 750 mi PE für Fe ii Istab 750 mi Class 11
Messstellen Flas	1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braur filtriert 2 x unfiltriert 500 ml Glas für PE für CS stab. 100 ml Glass für Penol st. 710.000 ml Glass für FAK stab.	1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab (1000 ml Glas für GC-KW) 500 ml Braur filtriert 2 x unfiltriert 500 ml Glas für Phenol st 250 ml PE für CSB stab (100 ml Glass TC-CSB sta

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

BUC verantw. Labor	2 M
verantw. BUC	7

Datum der Probenahme: 26.8 15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 26. 8. 15

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
S64V9	filtriert unfiltriertko 1000 ml Glas 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW S00 ml Braunglas für fock PAK stab.	Soo mi PE So mi PE für Fe il stab.	X X S S S S S S S S S S S S S S S S S S	THOMASE 150772056	Füllgrad Verschluss in Ordnung	6215=Hd
W819	1000 ml Glas filtriert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-kW 500 ml Braunglas für GC-kW 500 ml Braunglas für Fhenol stab. 250 ml Glas für Phenol stab. 100 ml Glasschiff für TIC/DOC filtriert MI	S00 ml PE (Marmor) (Marmor) (Marmor) (Marmor) (Marmor) (Marmor) (Mithiert Sulfid stab. (Intrient Unfiltrient S00 ml Glas Acidität S00 ml Glas Cyamide stab. Cyamide stab. S00 ml Glas Cyamide stab. S00 ml Glas Cyamide stab. S00 ml Glas Cyamide stab. Cyamide stab. S00 ml Glas Cyamide stab. S00 ml	R P 1 Sulfid Sul	150772057	Füllgrad Verschluss in Ordnung	85/5=Hd
A = = + + + + + + + + +	CIE 31 115	11 14 TIC BOC MILLA M Nikasa M a Dhannard Canamahannar Kalima Na Ca Ma Karbanashasha Gacamthasa Ol Suifest	/ reduced at	N. C. M. Vorbonothärte Geesmith:	total	

Analytik:

ph., Lr. 11C, DOC, Nn4-N, Nitrat-N, O-Priospirat, Gesarintpriospirot, Nation, Na, Ca, Mg, Na, Eisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

verantw. Labor	Mo
verantw. BUC	14

De: 26815	Sonstiges	PH=6,12	2517 - Ha
Datum der Probenübergabe:	Eingangskontrolle	Füllgrad Verschluss in Ordnung □	Füllgrad Verschluss in Ordnung □
	Labor Nr.	150772058	Soo mile für Für Fe il stab. P 1 X Kir BSB5 350 mile für Fe il stab. P 2 X Soo mile für BSB5 350 mile für Phosphat KS X Sunfd stab. 250 mile für Miler Aci. X X S Intiret 1 x 250 mile für Miler X X S Intiret 1 x 250 mile für Miler X X Miler 1 x 250 mile für Miler X X Miler 250 mile für Mostab. X X Acidität 250 mile stab. X X Acidität 250 mile stab. X X Schiiff für unflitriert 250 mile stab. X X
Witznitz 15-0	Analytik	P 1 KS KS Aci. Sulfid Ks = Kb =	P 1 KS
Projekt: Monitoring Witznitz 15-002-40		So mi PE für Fe il stab. filtriert So mi PE für Phosphat filtriert So mi PE für Phosphat filtriert So mi PE für Anionen und NH4 So mi PE für Hg stab. filtriert für AOX stab. So mi Glasschifff für AOX stab. Co x Headspace Co x X Headspace Co	250 ml PE für Fe II stab. filthert
26.8.15	nsatz	S00 ml PE S00 ml PE Turn BSB5 Turn BSB5 Turn BSB5 Suffid stab. S00 ml Glas Control of the sufficient	SOO MI PE (Marmor) SOO MI PE für BSB5 Für BSB5 Suffid stab. Suffid stab. Illiniert T x 250 mI PE für Soo milliniert ab. 250 mI Glas Acidität Soo milliniert Soo milliniert Soo milliniert Effittiert Cab. Soo milliniert Cab.
obenahme	Flaschensatz	1000 ml Glas filtriert unfiltriertko	filtriert unfiltriertko 1000 ml Glas 1000 ml Glasschiff für Phenol stab. 100 ml Glasschiff für TichDoc filtriert 1000 ml Glasschiff für TichDoc filtriert
Datum der Probenahme:	Messstellen	40819	61811

pH, Lf, TIC, DOC, NH4-N, Nitrat-N, o-Phosphat, Gesamtphosphor, Kalium, Na, Ca, Mg, Karbonathärte, Gesamthärte, Cl, Sulfat, Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 1:

P 2 Versauerung:

be Leergut an BUC Anzahl	der leeren Flaschensätze:
Jbergab	lenge d

verantw. BUC	verantw. Labor
Da	

Datum der Probenahme: 26.8, 15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 26, 8,15

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
21849	1000 ml Glas	500 ml PE	P P P P P P P P P P P P P P P P P P P	THOWASE 150772060	Füllgrad Verschluss in Ordnung	67'S=Hd
61813	1000 ml Glas	Soo ml PE Marmor) Good ml PE Soo ml PE Grir BSB5 Grif BSB5 Iffithert Soo ml PE Soo ml PE Tittle stab. Miltriert 1 x 250 ml PE für Phosphat A x 250 ml PE für Phosphat The stab. Miltriert To ml PE für Anionen Unfiltriert To ml PE für Anionen Unfiltriert To ml PE für Phosphat The stab. Soo ml PE für Anionen Unfiltriert Soo ml Glass Acidität Soo ml PE für Soo ml PE für Soo ml Glass Cyanide stab. Tittriert Soo ml Glass Cyanide stab. Soo ml Glass Cyanide stab. Tittriert Soo ml Glasschliff Tür AOX stab. Tittriert To x Headspace	P 1 P 2 KS KS Aci. Sulfid \(\begin{align*}	THOMASE 150772061	Füllgrad Verschluss in Ordnung	PH-6,28

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

verality. Labor	Bo
verantw. boc	Per

Datum der Probenahme: * (4, 9), XS

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 🔖 9

Sonstiges	94-6,66	pH-575
Eingangskontrolle	Füllgrad Verschluss in Ordnung	Füllgrad Verschluss in Ordnung
Labor Nr.	150806289	150806290
Analytik	P 1 KS KS Aci. Sulfid Ks = Kb = Kb	P P 1 KS KS Sulfid
atz	S00 ml PE S50 ml PE für Fe II stab.	Soom PE Soom PE für Fe ii stab. P 1 Stable P 250 ml PE für Fe ii stab. P 1 Stable P 2 Stable P 3 Stable P 3 Stable P 4 Stable P 5 St
Flaschensatz	flittiert unfiltriertko 1000 ml Glas flittiert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-kW 200 ml Braunglas flittiert 2 x unfiltriert 250 ml Glas für CSB stab. 100 ml Glasschliff für TIC/DOC filtriert 1100 ml Glasschlift für TIC/DOC filtriert für TIC	1000 ml Glas flitriert unflitriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-RW 500 ml Braunglas für GC-RW 500 ml Glas für CC-RW 100 ml Glas für Phenol stab. 100 ml Glasschliff für TIC/DOC flitriert TIC/DOC flitriert TIC/DOC flitriert TIC/DOC flitriert TIC/DOC flitriert TIC/DOC flitriert
Messstellen	61651	CMM

Analytik:

pH, Lt, IIC, DOC, NH4-N, Nitrat-N, o-Pnospnat, Gesamtphospnot, Nalium, Na, Ca, Mg, Nal Eisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert** < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung:

Anzahl	
Übergabe Leergut an BUC	Menge der leeren Flaschensätze:

verantw. Labor	10
verantw. BUC	3

Datum der Probenahme: 4.9.15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 4.9 15

Messstellen	Flaschensatz	Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
61631	1000 ml Glas	Il stab. P 1 P 2 P 2 P 3 Nosphat KS Sulfid Sulfid T T T T T T T T T T T T T	150806377	Füllgrad Verschluss in Ordnung	Et + +4
CNEW	1000 ml Glas	Il stab. P 1	150806378	Füllgrad Verschluss in Ordnung	PH-615

pn, Li, IIC, DCC, Nn14-14, Nutar-14, O-Filospinat, Gesalinpinospinot, Nationi, Nat. Ca. Mg, Nat. Eisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Übergabe Leergut an BUC	Anzahl
Menge der leeren Flaschensätze:	

verantw. Labor	
verantw. BUC	3

Irologisches Monitoring Wes achsen/Thüringen 2015

hyd	onitorir
Mont	Projekt: Monitorir
rotokoll	1
rgabep	0
ne/-Ube	obenahme:
Ubernahme/-Ubergabeprotokoll Monthhyd	Datum der Probenahme:

ng Witznitz 15-002-40

Datum der Probenübergabe: 4-9.15

Eingangskontrolle Sonstiges	Füllgrad Verschluss in Ordnung	Füllgrad Verschluss in Ordnung □
Labor Nr.	150806379	
Analytik	P 1 KS KS Aci. Sulfid KS = KS KS = Kb = Kb = Kb = Kb + Kb + Kb + Kb + Kb	P 1 KS KS Aci. Sulfid KS = Kb = Kb
atz	Soo mi PE	S00 ml PE S50 ml PE für Fe II stab.
Flaschensatz	fittiert unfiltriertko fittiert unfiltriertko 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW 500 ml Braunglas fittiert K 2 x unfiltriert 500 ml Glas für CSB stab. 100 ml Glasschliff für TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert TIC/DOC filtriert	flitriert unflitriertko flitriert unflitriertko 1000 ml Glass für PAK stab. 1000 ml Glass für GC-kW 500 ml Braunglas filtriert 500 ml Glass filtriert 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC filtriert TIC/DOC filtriert 100 ml Glasschliff für TIC/DOC filtriert
Messstellen	617211	

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Anzahl	ze:
Übergabe Leergut an BUC	Menge der leeren Flaschensät

verantw. Labor	1/2
verantw. BUC	3

Datum der Probenahme: ५ ९ , ४८

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: U of 1/5

Messstellen	Flaschensatz	Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
Men	1000 mi Glas	P 2 4 KS Sulfid X X X X X X X X X X X X X X X X X X X	150806380	Füllgrad Verschluss in Ordnung	75/2+10
Mon	1000 ml Glas	P P P P P P P P P P P P P P P P P P P	150806381	Füllgrad Verschluss in Ordnung	pt=3,95

pri, Li, TiC, DCC, Nr14-14, Nitrar-14, O-Fritospirat, Gesalripriospirot, Nationi, Nat. Ca. My, Nat. Eisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Jbergabe Leergut an BUC	Anzahl
Vlenge der leeren Flaschensätze:	

tw. Labor	D
C verantw	
verantw. BUC	9

Datum der Probenahme: 4.9.15

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 4.9, 15

Messstellen	Flaschensatz		Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
V6SVS	filtriert unfiltriertko	500 mi PE S 250 mi PE für Fe il stab. (Marmor) unfiltriert S 500 mi PE für Phosphat fütriert Suffür stab. (Iltriert III stab.) für stab. (Iltriert III stab.) In S 500 mi PE für Anionen unfiltriert III S 500 mi PE für Anionen unfiltriert III S 500 mi PE für Anionen III s 500 mi PE für Hg stab. S 500 mi Glass S 500 mi Glass Acidität S 500 mi Glass S 500 mi Glasschiff für AOX stab. III	R S Sulfid C S S S S S S S S S S S S S S S S S S	150806382	Füllgrad Verschluss in Ordnung	5,15=40
616 M	flithert unfiltriertko 1000 ml Glas 1000 ml Glasschiff für 1000 ml Glasschiff für 1000 ml Glasschiff für Iltriert 10	S00 ml PE 250 ml PE für Fe II stab. (Marmor) 500 ml PE für BSB5 150 ml PE für Phosphat filtriert 250 ml PE für Phosphat filtriert 1 x 250 ml PE für Anionen unfiltriert 250 ml PE für Anionen unfiltriert 1 x 250 ml PE für Anionen unfiltriert 250 ml PE für Anionen unfiltriert 250 ml Glass Cyanide stab. 250 ml PE für Anionen unfiltriert 250 ml Glass Cyanide stab. 250 ml PE für AOX stab.	P 1 P 2 KS KS Adi. Sulfid X X = Kb = Kb = Kb X X X X X X X X X X X X X X X X X X	150806383	Füllgrad Verschluss in Ordnung	05,4 50

Analytik: P 1:

pH, Lf, TIC, DOC, NH4-N, Nitrat-N, o-Phosphat, Gesamtphosphor, Kalium, Na, Ca, Mg, Kalisen gel., Eisen II, Mangan gel.
As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn pH-Wert < 5 nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Ubergabe Leergut an BUC	Anzahl
Menge der leeren Flaschensätze:	

Labor	11
verantw.	12
BUC	\
verantw.	1

Datum der Probenahme: 4 , A

Projekt: Monitoring Witznitz 15-002-40

Datum der Probenübergabe: 4.9 1

Messstellen	Flaschensatz			Analytik	Labor Nr.	Eingangskontrolle	Sonstiges
61301	filtriert unfilltriertko 1000 ml Glas filtriert 1000 ml Glas für PAK stab. 1000 ml Glas für GC-KW S00 ml Braunglas für für GC-KW S00 ml Glas für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschilft für TIC/DOC filtriert 1000 ml Glasschilft für TIC/DOC filtriert für	500 ml PE S50 ml (Marmor) unfiltrie 500 ml PE 550 ml 250 ml PE 67 250 ml 250 ml PE 67 250 ml Sulfid stab. 250 ml Intriert unfiltriert Und NI 1 x 250 ml PE 67 100 ml 3 stab. Intriert Und NI 1 x 250 ml 500 ml Glas Unfiltriert Unfiltriert Unfiltriert Unfiltriert Unfiltriert Unfiltriert Unfiltriert Unfiltriert Unfiltriert S50 ml 250 ml 600 ml Glas Cyanic 61 x 250 ml 61 x 40 x 61 x 61 x 62 x 61 x 62 x 61 x 62 x 62	250 ml PE für Fe II stab. Illüriert 250 ml PE für Phosphat fillriert 250 ml PE für Anionen und NH4 100 ml PE für Anionen und NH6 250 ml PE für Anionen 250 ml PE für 250 ml Glasschliff für AOX stab. 2 x Headspace	P 1 KS KS KS Sulfid KS	150806384	Füllgrad Verschluss in Ordnung	pH= 4,13
NSLUG	filtriert unfiltriertko 1000 ml Glas filtriert 1000 ml Glas für GC-KW 500 ml Braunglas filtriert 2 x unfiltriert 500 ml Glas für Phenol stab. 250 ml PE für CSB stab. 100 ml Glasschliff für TIC/DOC filtriert 110/DOC filtriert 1	500 ml PE	250 ml PE für Fe II stab. flitriert	X X Sulfid X X S = 1	150806385	Füllgrad Verschluss in Ordnung	94-3,74

Eisen gel., Eisen II, Mangan gel. As, Pb, Cd, Cr ges., Cu, Ni, Zn, Aluminium, Silizium nur untersuchen wenn **pH-Wert < 5** nur bei Auffälligkeiten z.B. Geruch der Probe nach Schwefelwasserstoff P 2 Versauerung: Sulfid

Übergabe Leergut an BUC	Anzahl
Menge der leeren Flaschensätze:	

verantw. Labor	Sa
verantw. BUC	6

Montanhydrologisches Monitoring Jahr 2015

Zusammenstellung der Analysenergebnisse im Vergleich zu den Schwellenwerten der LAWA

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung		150806382 61591 RKB1 Ki	150806383 61601 RKB2 Ki	150806381 61611 RKB3 Ki	150806380 61621 RKB4 Ki	150806377 61631 RKB5 Ki
Probenahmedatum		04.09.2015	04.09.2015	04.09.2015	04.09.2015	04.09.2015
pH-Wert		5	4,1	3,3	3,6	3,6
elektr. Leitfähigkeit	μS/cm	3860	5390	6790	9220	2320
Karbonathärte	mgCaO/l	20,75	-	-	-	-
Gesamthärte	mmol/l	19,8	19,5	20,9	24,7	14,5
gesamte wirksame Acidität	mmol/l	20,1	54	76	138	2,4
TIC	mg/l	63	60	3,3	3,2	8,4
DOC	mg/l	4,2	29	5	5,4	2,4
Ammonium (N)	mg/l	2,7	5	4,8	3,5	0,31
Nitrat (N)	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/l	0,031	0,068	0,073	0,015	0,016
Gesamtphosphor (P)	mg/l	0,031	0,068	0,073	0,015	0,016
Sulfat	mg/l	2690	4800	5770	10000	1480
Chlorid	mg/l	30,3	41,9	178	57,9	45,7
Sulfid	mg/l		< 0,03	< 0,03	< 0,03	< 0,03
Calcium (Ca)	mg/l	500	440	436	408	475
Magnesium (Mg)	mg/l	178	207	243	353	65
Natrium (Na)	mg/l	25,8	28,9	38,1	37,4	29,9
Kalium (K)	mg/i	11,8	19,8	22,9	21	5,9
Eisen (Fe) gelöst	mg/l	650	1600	2200	4000	21
Eisen (2+)	mg/l	650	1500	2100	4000	19
Mangan (Mn) gelöst	mg/l	18	25	25	57	0,24
Silizium (Si)	mg/l		41	42	29	7,6
Aluminium (AI)	mg/l		3,8	21	68	7
Arsen (As)	mg/l		0,007	0,05	0,019	0,013
Blei (Pb)	mg/l		< 0,005	< 0,005	< 0,005	< 0,005
Cadmium (Cd)	mg/l		< 0,001	< 0,001	< 0,001	< 0,001
Chrom (Cr) ges.	mg/l		0,016	0,057	3	0,009
Kupfer (Cu)	mg/l		< 0,005	< 0,005	< 0,005	< 0,005
Nickel (Ni)	mg/l		0,006	0,082	1,6	0,067
Zink (Zn)	mg/l		0,77	4,3	1,8	0,07
lonenbilanz						
Kationensumme	mmoleq/l	65,46	101,61	128,65	204,95	32,35
Anionensumme	mmoleq/l	57,60	101,12	125,15	209,84	32,10
lonenbilanzfehler	%	6,39	0,24	1,38	-1,18	0,38

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung Probenahmedatum		150806378 61641 RKB6 Ki 04.09.2015	150806289 61651 RKB7 Ki 04.09.2015	150732658 61661 RKB8 Ki 13.08.2015	150732648 61681 RKB10 Ki 13.08.2015	150806384 61701 RKB12 Ki 04.09.2015
pH-Wert		6	7,2	3,6	3,7	3,7
elektr. Leitfähigkeit	μS/cm	1800	2340	3530	4460	3020
Karbonathärte	mgCaO/I	72,06	163,19	-	2	_
Gesamthärte	mmol/l	11,8	15,7	17,4	19,2	15,2
gesamte wirksame Acidität	mmol/l	-2,2	-5,4	18,9	31,7	12,3
TIC	mg/l	44	77	4,9	20	4,2
DOC	mg/l	4	2,8	3,6	4,3	6,8
Ammonium (N)	mg/l	0,37	0,54	2,6	2,9	6,8
Nitrat (N)	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/l	0,040	0,013	< 0,005	0,016	0,033
Gesamtphosphor (P)	mg/l	0,042	0,017	< 0,005	0,016	0,033
Sulfat	mg/l	1030	1230	3040	3260	2240
Chlorid	mg/l	27,3	69,5	9,8	35,7	8,6
Sulfid	mg/l			< 0,03	< 0,03	< 0,03
Calcium (Ca)	mg/l	392	525	513	489	525
Magnesium (Mg)	mg/l	48	62,2	113	169	50,8
Natrium (Na)	mg/l	20,6	24,6	9,3	21,9	11,3
Kalium (K)	mg/l	5,2	6,6	16,4	32,4	13,5
Eisen (Fe) gelöst	mg/l	34	14	490	940	270
Eisen (2+)	mg/l	30	13	490	880	260
Mangan (Mn) gelöst	mg/l	1,2	0,77	13	29	7,1
Silizium (Si)	mg/l			15	21	35
Aluminium (AI)	mg/l			20	18	16
Arsen (As)	mg/l			0,007	0,02	0,094
Blei (Pb)	mg/l			< 0,005	< 0,005	< 0,005
Cadmium (Cd)	mg/l			< 0,001	< 0,001	< 0,001
Chrom (Cr) ges.	mg/l			0,012	0,005	0,009
Kupfer (Cu)	mg/l			0,05	0,007	< 0,005
Nickel (Ni)	mg/l			0,9	0,035	0,13
Zink (Zn)	mg/l			1,9	0,94	1,2
Ionenbilanz						
Kationensumme	mmoleq/l	25,90	33,14	56,94	78,72	44,22
Anionensumme	mmoleq/l	24,79	33,39	63,57	68,88	46,88
Ionenbilanzfehler	%	2,20	-0,38	-5,50	6,66	-2,92

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung Probenahmedatum		150806290 61711 RKB13 Ki 04.09.2015	150806379 61721 RKB14 Ki 04.09.2015	150806385 61751 RKB17 Ki 04.09.2015	150732645 61761 RKB18 Ki 13.08.2015	150732646 61771 RKB19 Ki 13.08.2015
pH-Wert elektr. Leitfähigkeit Karbonathärte Gesamthärte gesamte wirksame Acidität TIC DOC Ammonium (N) Nitrat (N) ortho-Phosphat-P Gesamtphosphor (P) Sulfat Chlorid	μS/cm mgCaO/l mmol/i mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5,0 2140 20,47 12 6 21 3 2,3 < 0,1 0,062 0,062 1360 19,6	6,0 2610 57,48 17,6 -1,5 31 11 1,8 0,6 0,008 0,015 1720 38,5	3,2 3680 - 16,5 21,3 34 13 7,5 < 0,1 0,087 0,087 2840 41,6	3,9 1450 - 6,64 7,7 6,5 4,9 0,93 < 0,1 < 0,005 < 0,005 787 10,8	3,7 4160 16,3 32,4 49 6,8 3,3 0,2 0,075 0,075 2980 14,3
Sulfid Calcium (Ca) Magnesium (Mg) Natrium (Na) Kalium (K) Eisen (Fe) gelöst Eisen (2+) Mangan (Mn) gelöst	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	436 26,4 7,3 10,7 110 110 9,5	593 68,4 16,3 9,8 48 40 22	< 0,03 525 83,7 18,3 43,1 580 550 6,4	< 0,03 218 9,8 3,6 3,2 86 49 2,9	< 0,03 477 107 12,1 14,2 860 830 16
Silizium (Si) Aluminium (Al) Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) ges. Kupfer (Cu) Nickel (Ni) Zink (Zn)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l			49 28 0,21 < 0,005 < 0,001 0,043 < 0,005 0,31 1,4	29 23 0,006 < 0,005 0,001 < 0,005 0,01 0,2 0,57	50 20 0,072 < 0,005 < 0,001 0,006 < 0,005 0,27 3,1
Ionenbilanz Kationensumme Anionensumme Ionenbilanzfehler	mmoleq/l mmoleq/l %	29,29 28,87 0,72	38,97 38,99 -0,03	60,80 60,30 0,41	19,03 16,69 6,54	68,50 62,46 4,61

INSTITUT FRESENIUS

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung Probenahmedatum		150732659 61781 RKB20 Ki 13.08.2015	150772049 61791 M1-1 Ki 26.08.2015	150772050 61792 M1-2 Ki 26.08.2015	150772051 61793 M1-3 Ki 26.08.2015	150772052 61794 M1-4 Ki 26.08.2015
pH-Wert		3,3	4,6	5,1	5,4	5
elektr. Leitfähigkeit	μS/cm	2960	8430	6950	5960	7640
Karbonathärte	mgCaO/I	-	4,2	14,02	36,73	12,62
Gesamthärte	mmol/l	14,9	20,4	22,2	22,1	23
gesamte wirksame Acidität	mmol/l	14,4	66,4	73,4	42,3	96,1
TIC	mg/l	17	17	21	56	35
DOC	mg/l	27	12	7,4	13	8,6
Ammonium (N)	mg/l	6,2	22	26	6	4
Nitrat (N)	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/I	< 0,005	0,007	0,039	0,007	0,026
Gesamtphosphor (P)	mg/l	< 0,005	0,02	0,049	0,14	0,072
Sulfat	mg/l	2380	7000	6420	4300	6910
Chlorid	mg/l	8,4	97,8	138	219	164
Sulfid	mg/l	< 0,03			< 0,03	
Calcium (Ca)	mg/l	547	461	437	517	446
Magnesium (Mg)	mg/l	29,9	216	274	223	289
Natrium (Na)	mg/l	5,5	111	39,4	97,1	44,3
Kalium (K)	mg/l	10,5	50,1	64,7	26	23,8
Eisen (Fe) gelöst	mg/l	290	2000	2400	1400	2300
Eisen (2+)	mg/l	260	1800	2200	1400	2100
Mangan (Mn) gelöst	mg/l	3,4	29	41	24	70
Silizium (Si)	mg/l	56				
Aluminium (Al)	mg/l	22				
Arsen (As)	mg/l	0,021				
Blei (Pb)	mg/l	< 0,005				
Cadmium (Cd)	mg/i	< 0,001				
Chrom (Cr) ges.	mg/l	0,018				
Kupfer (Cu)	mg/l	0,011				
Nickel (Ni)	mg/l	0,36				
Zink (Zn)	mg/l	0,96				
Ionenbilanz						
Kationensumme	mmoleq/l	44,99	126,71	140,62	100,47	137,37
Anionensumme	mmoleq/l	49,79	148,50	137,61	97,02	148,49
Ionenbilanzfehler	%	-5,06	-7,92	1,08	1,75	-3,89

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung		150772056 61795 M1-5 Ki	150772057 61801 M2-1 Ki	150772053 61802 M2-2 Ki	150772054 61803 M2-3 Ki	150772058 61804 M2-4 Ki
Probenahmedatum		26.08.2015	26.08.2015	26.08.2015	26.08.2015	26.08.2015
pH-Wert		5,8	5,1	3,9	4,8	5,7
elektr. Leitfähigkeit	μS/cm	4390	6160	9470	7030	5850
Karbonathärte	mgCaO/l	183,1	19,63	-	21,59	254,6
Gesamthärte	mmol/l	21,2	26,2	19,5	26,6	24,5
gesamte wirksame Acidität	mmol/l	15,8	52	193	60	25,4
TIC	mg/l	75	38	47	54	80
DOC	mg/l	19	6,8	9,5	11	8,6
Ammonium (N)	mg/l	3,3	7,8	12	4	0,53
Nitrat (N)	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/l	0,007	< 0,005	0,036	0,013	0,007
Gesamtphosphor (P)	mg/l	0,059	0,026	0,052	0,049	0,039
Sulfat	mg/l	2940	5660	12200	6290	3820
Chlorid	mg/l	99,9	168	81,2	129	197
Sulfid	mg/l			< 0,03		
Calcium (Ca)	mg/l	525	464	439	439	521
Magnesium (Mg)	mg/l	196	355	208	380	279
Natrium (Na)	mg/l	65,5	57,3	54	155	68,7
Kalium (K)	mg/l	14	27,1	38,5	36,4	17,9
Eisen (Fe) gelöst	mg/l	820	1800	4000	2400	1200
Eisen (2+)	mg/l	820	1700	3800	2400	1100
Mangan (Mn) gelöst	mg/l	27	30	32	40	41
Silizium (Si)	mg/l			7,2		
Aluminium (Al)	mg/l			280		
Arsen (As)	mg/l			0,033		
Blei (Pb)	mg/l			< 0,005		
Cadmium (Cd)	mg/l			< 0,001		
Chrom (Cr) ges.	mg/l			0,011		
Kupfer (Cu)	mg/l			< 0,005		
Nickel (Ni)	mg/l			2		
Zink (Zn)	mg/l			6,6		
lonenbilanz		70.44	101.11			
Kationensumme	mmoleq/l	76,11	124,44	222,47	148,54	98,69
Anionensumme	mmoleq/l	70,56	123,28	256,30	134,60	94,17
Ionenbilanzfehler	%	3,79	0,47	- 7,07	4,93	2,34

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung Probenahmedatum		150772059 61811 M3-1 Ki 26.08.2015	150772060 61812 M3-2 Ki 26.08.2015	150772061 61813 M3-3 Ki 26.08.2015	150772055 61814 M3-4 Ki 26.08.2015	150732647 70591 1301 K 13.08.2015
pH-Wert elektr. Leitfähigkeit Karbonathärte Gesamthärte gesamte wirksame Acidität TIC DOC Ammonium (N) Nitrat (N) ortho-Phosphat-P Gesamtphosphor (P) Sulfat Chlorid Sulfid Calcium (Ca) Magnesium (Mg) Natrium (Na) Kalium (K) Eisen (Fe) gelöst Eisen (2+) Mangan (Mn) gelöst Silizium (Si) Aluminium (Al) Arsen (As)	μS/cm mgCaO/l mmol/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m	3,9 7830 - 21,9 98,2 9,6 6,2 5 < 0,1 < 0,005 < 0,005 7630 147 < 0,03 445 262 75,4 25,3 2800 2700 30 12 30 0,038	5,3 5980 141,04 22,5 41,1 55 8,7 2,8 < 0,1 0,01 0,026 4470 260 476 259 117 19,2 1500 1400 21	5,8 5290 125,62 29,1 45,6 50 36 1,9 < 0,1 0,013 0,62 4510 107 512 396 74,6 19,3 1100 1100 34	5,5 6170 35,61 27 62,4 29 69 2,5 < 0,1 0,02 1,6 6280 136 483 364 59 20,6 1900 1700 64	3,1 4770 - 15,9 49,7 11 7,7 3,3 < 0,1 0,078 0,078 3990 37,2 < 0,03 492 87,8 48,1 28,9 960 890 6
Blei (Pb) Cadmium (Cd) Chrom (Cr) ges. Kupfer (Cu) Nickel (Ni) Zink (Zn)	mg/l mg/l mg/l mg/l mg/l mg/l	< 0,005 0,002 0,006 < 0,005 0,86 5				< 0,005 < 0,001 0,015 0,015 0,5 1,2
Kationensumme Anionensumme Ionenbilanzfehler	mmoleq/l mmoleq/l %	155,79 163,01 -2,26	107,12 105,43 0,79	102,63 101,40 0,61	131,27 135,86 -1,72	93,73 84,12 5,40

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung		150732649 70601 1302 K	150732650 70611 1303 K	150732651 70621 1304 K	150732652 70631 1305 K	150732653 70641 1306 K
Probenahmedatum		13.08.2015	13.08.2015	13.08.2015	13.08.2015	13.08.2015
pH-Wert		4	3,8	3,2	4,6	3,3
elektr. Leitfähigkeit	μS/cm	4820	5350	7480	4750	6660
Karbonathärte	mgCaO/I	-		-	11,22	-
Gesamthärte	mmol/l	21,3	19,6	23,4	20,1	19,6
gesamte wirksame Acidität	mmol/l	36,4	49,4	91,1	35,7	85,7
TIC	mg/l	8,6	28	20	36	28
DOC	mg/l	5	3,6	4,3	9,9	5
Ammonium (N)	mg/l	3,9	2,5	3,3	5	4,3
Nitrat (N)	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ortho-Phosphat-P	mg/l	< 0,005	< 0,005	< 0,005	0,007	< 0,005
Gesamtphosphor (P)	mg/l	< 0,005	< 0,005	< 0,005	0,007	< 0,005
Sulfat	mg/l	3850	4550	7870	3720	6970
Chlorid	mg/l	15,8	45,8	29,4	22,4	23,1
Sulfid	mg/l	< 0,03	< 0,03	< 0,03		< 0,03
Calcium (Ca)	mg/l	475	463	436	494	450
Magnesium (Mg)	mg/l	229	196	305	188	204
Natrium (Na)	mg/l	21	32,8	31	21	23,7
Kalium (K)	mg/l	21,5	16,8	19	23,6	24,4
Eisen (Fe) gelöst	mg/l	950	1200	2800	1100	2500
Eisen (2+)	mg/l	950	1100	2400	1100	2200
Mangan (Mn) gelöst	mg/l	32	36	71	82	40
Silizium (Si)	mg/l	35	9,9	25		39
Aluminium (AI)	mg/l	16	30	17		80
Arsen (As)	mg/l	0,037	0,022	0,014		0,036
Blei (Pb)	mg/l	< 0,005	< 0,005	< 0,005		< 0,005
Cadmium (Cd)	mg/l	< 0,001	< 0,001	< 0,001		< 0,001
Chrom (Cr) ges.	mg/l	0,13	0,01	0,006		0,011
Kupfer (Cu)	mg/l	< 0,005	0,019	0,006		< 0,005
Nickel (Ni)	mg/l	5,9	0,43	0,11		0,28
Zink (Zn)	mg/l	0,99	2,1	4,8		3,1
lonenbilanz						
Kationensumme	mmoleq/I	81,65	91,18	161,46	84,87	146,95
Anionensumme	mmoleq/i	80,60	96,02	164,69	78,08	145,77
lonenbilanzfehler	%	0,64	-2,59	-0,99	4,16	0,40

Montanhydrologisches Monitoring Jahr 2015

Labornummer Markscheidernummer Messstellenname Grundwasserleiterzuordnung Probenahmedatum		150732654 70651 1307 K 13.08.2015	150732656 70661 1308 K 13.08.2015	150732655 70671 1309 K 13.08.2015	150732657 70681 1310 K 13.08.2015
pH-Wert elektr. Leitfähigkeit Karbonathärte Gesamthärte gesamte wirksame Acidität TIC DOC Ammonium (N) Nitrat (N) ortho-Phosphat-P Gesamtphosphor (P) Sulfat	μS/cm mgCaO/l mmol/l mg/l mg/l mg/l mg/l mg/l mg/l	5,1 3680 49,07 17,5 18,5 18 2,6 1,9 < 0,1 0,01 0,01 2340	3,4 9070 - 23,1 140 27 6,9 6,3 < 0,1 < 0,005 < 0,005	3,1 3290 - 14,9 22,9 12 9,4 3,5 < 0,1 0,007 0,007 2180	3,3 4920 - 17,9 47,5 5,4 4 3,8 < 0,1 < 0,005 < 0,005 3960
Chlorid Sulfid Calcium (Ca) Magnesium (Mg) Natrium (Na) Kalium (K) Eisen (Fe) gelöst Eisen (2+) Mangan (Mn) gelöst	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	14,7 533 102 14,6 7,2 480 440 18	36,7 < 0,03 438 296 25,8 31,1 4200 3800 91	6,4 < 0,03 504 56,2 7,3 6,1 340 340	4,8 < 0,03 569 89,8 5,2 29 1200 1200
Silizium (Si) Aluminium (Al) Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) ges. Kupfer (Cu) Nickel (Ni) Zink (Zn)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l		48 56 0,016 < 0,005 < 0,001 0,028 < 0,005 0,13 8,8	48 92 0,019 < 0,005 0,003 0,053 0,038 0,71 1,1	18 36 0,011 < 0,005 < 0,001 0,007 0,018 3,2 6,4
Ionenbilanz Kationensumme Anionensumme Ionenbilanzfehler	mmoleq/l mmoleq/l %	55,00 50,88 3,89	216,08 217,57 -0,34	54,10 45,57 8,56	85,48 82,58 1,73

Montanhydrologisches Monitoring Jahr 2015 Flutungsüberwachung Kippe Witznitz

Probenahme: H. Beyer UmweltConsult GmbH Leipzig Analytik: SGS Institut Fresenius GmbH Espenhain

Parameter		BG	Standard-Prüfverfahren
pH-Wert		0,1	DIN 38 404 - C 5
elektr. Leitfähigkeit	μS/cm	3	DIN EN 27 888
Gesamttrockenrückstand	mg/l	10	DIN 38 409 - H 1 - 1
Filtrattrockenrückstand	mg/l	10	DIN 38 409 - H 1 - 2
Kalkaggressive Kohlensäure	mg/l	3	DIN 4030-2
Karbonathärte	mgCaO/I	2	DIN 38 409 - H 7
Gesamthärte	mmol/l	0,02	DIN 38 409 - H 6
Gesamte wirksame Acidität	mmol/l	1	Merkblatt MHM
TIC	mg/l	1	DIN EN 1484
DOC	mg/l	1	DIN EN 1484
Ammonium (N)	mg/l	0.03	DIN EN ISO 11 732
Nitrat (N)	mg/l	0,1	DIN EN ISO 10 304-1
Nitrit (N)	mg/l	0.006	DIN EN 26 777
ortho-Phosphat-P	mg/l	0,005	DIN EN 6878
Gesamtphosphor (P)	mg/l	0,005	DIN EN 6878
Sulfat	mg/l	1	DIN EN ISO 10 304-1
Chlorid	mg/l	0,5	DIN EN ISO 10 304-1
Fluorid	mg/l	0,2	DIN EN ISO 10 304-1
Sulfid	mg/l	0,03	DIN 38 405 - D 27
Calcium (Ca)	mg/l	0,5	DIN EN ISO 11885
Magnesium (Mg)	mg/l	0,05	DIN EN ISO 11885
Natrium (Na)	mg/l	0,5	DIN EN ISO 11885
Kalium (K)	mg/l	0,5	DIN EN ISO 11885
Eisen (Fe) gelöst	mg/l	0,01	DIN EN ISO 11885
Eisen (2+)	mg/l	0,02	DIN 38406 - E 1
Mangan (Mn) gelöst	mg/l	0,005	DIN EN ISO 11885
Silizium (Si)	mg/l	0,05	DIN EN ISO 11885
Aluminium (AI)	mg/l	0,05	DIN EN ISO 11885
Arsen (As)	mg/l	0,005	DIN EN ISO 11885
Blei (Pb)	mg/l	0,005	DIN EN ISO 11885
Cadmium (Cd)	mg/l	0,001	DIN EN ISO 11885
Chrom (Cr) ges.	mg/l	0,005	DIN EN ISO 11885
Kupfer (Cu)	mg/l	0,005	DIN EN ISO 11885
Nickel (Ni)	mg/l	0,005	DIN EN ISO 11885
Zink (Zn)	mg/l	0,01	DIN EN ISO 11885
lonenbilanz			
Kationensumme	mmoleq/l		
Anionensumme	mmoleq/l		
Ionenbilanzfehler	%		
AOX	mg/l	0,01	DIN EN 1485